Autonomous Robots

, Volume 14, Issue 2–3, pp 103–126 | Cite as

Planetary Rover Developments Supporting Mars Exploration, Sample Return and Future Human-Robotic Colonization

  • Paul S. Schenker
  • Terry L. Huntsberger
  • Paolo Pirjanian
  • Eric T. Baumgartner
  • Eddie Tunstel

Abstract

We overview our recent research on planetary mobility. Products of this effort include the Field Integrated Design & Operations rover (FIDO), Sample Return Rover (SRR), reconfigurable rover units that function as an All Terrain Explorer (ATE), and a multi-Robot Work Crew of closely cooperating rovers (RWC). FIDO rover is an advanced technology prototype; its design and field testing support NASA's development of long range, in situ Mars surface science missions. Complementing this, SRR implements autonomous visual recognition, navigation, rendezvous, and manipulation functions enabling small object pick-up, handling, and precision terminal docking to a Mars ascent vehicle for future Mars Sample Return. ATE implements on-board reconfiguration of rover geometry and control for adaptive response to adverse and changing terrain, e.g., traversal of steep, sandy slopes. RWC implements coordinated control of two rovers under closed loop kinematics and force constraints, e.g., transport of large payloads, as would occur in robotic colonies at future Mars outposts. RWC is based in a new extensible architecture for decentralized control of, and collective state estimation by multiple heterogeneous robotic platforms—CAMPOUT; we overview the key architectural features. We have conducted experiments with all these new rover system concepts over variable natural terrain. For each of the above developments, we summarize our approach, some of our key experimental results to date, and our future directions of planned development.

mobile robots cooperating robots all terrain mobility robotic colonies robot architecture reconfigurable robots 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arkin, R.C. 1998. Behavior-Based Robotics, Intelligent Robotics and Autonomous Agents Series. The MIT Press: Cambridge, MA.Google Scholar
  2. Arkin, R.C. and Bekey, G.A. (Eds.). 1997. Special issue on robot colonies. Autonomous Robots, 4(5).Google Scholar
  3. Arvidson, R.E., Squyres, S.W., Baumgartner, E.T., Schenker, P.S., Niebur, C.S., Larsen, K.W., Seelos IV, F.P., Snider, N.O., Jolliff, B.L. 2002. FIDO prototype Mars rover field trials, Black Rock Summit, Nevada, as test of the ability of robotic mobility systems to conduct field science. Journal of Geophysical Research-Planets, 107(8), doi: 10.1029/2000JE001464.Google Scholar
  4. Arvidson, R.E., Squyres, S., Baumgartner, E.T., Dorsky, L., and Schenker, P. 2000. Rover trials for Mars sample return mission prove successful. EOS Transactions, American Geophysical Union, 81(7):65–72.Google Scholar
  5. Backes, P.G., Tso, K.S., and Tharp, G.K. 1999. The web interface for telescience. Presence, 8(5):531–539.Google Scholar
  6. Baumgartner, E.T., Aghazarian, H., Trebi-Ollennu, A., Huntsberger, T.L., and Garrett, M.S. 2000. State estimation and vehicle localization for the FIDO Rover. In Proc. Sensor Fusion and Decentralized Control in Robotic Systems III, SPIE Vol. 4196, Boston, MA.Google Scholar
  7. Fryer, J.A., McKee, G.T., and Schenker, P.S. 1997. Configuring robots from modules: An object oriented approach. In Proc. 8th IEEE International Conference on Advanced Robotics (ICAR'97), Monterey, CA, pp. 907–912.Google Scholar
  8. Hickey, G., Kennedy, B., and Ganino, A. 2000. Intelligent mobile systems for assembly, maintenance, and operations for space solar power. In Proc. ASCE Robotics 2000 Conference, Albuquerque, NM.Google Scholar
  9. Hickey, G.S. and Kennedy, B.A. 2001. Six legged experimental robot. NASA Tech Brief NPO-20897.Google Scholar
  10. Hoffman, B.D., Baumgartner, E.T., Huntsberger, T., and Schenker, P.S. 1999. Improved rover state estimation in challenging terrain. Autonomous Robots, 6(2):113–130.Google Scholar
  11. Huntsberger, T.L., Aghazarian, H., Baumgartner, E., and Schenker, P.S. 2000. Behavior-based control systems for planetary autonomous robot outposts. In Proc. IEEE Aerospace 2000, Big Sky, MT.Google Scholar
  12. Huntsberger, T.L., Aghazarian, H., Cheng, Y., Baumgartner, E.T., Tunstel, E., Leger, C., Trebi-Ollennu, A., and Schenker, P. 2002a. Rover autonomy for long range navigation and science data acquisition on planetary surfaces. In Proc. 2002 IEEE International Conf. on Robotics and Automation (ICRA2002),Washington, DC, May 11û15, 2002, pp. 3161–3168.Google Scholar
  13. Huntsberger, T.L., Baumgartner, E.T., Aghazarian, H., Cheng, Y., Schenker, P.S., Leger, P.C., Iagnemma, K.D., and Dubowsky, S. 1999a. Sensor-fused autonomous guidance of a mobile robot and applications to Mars sample return operations. In Proc. Sensor Fusion and Decentralized Control in Robotic Systems II, SPIE Vol. 3839, Boston, MA, pp. 2–8.Google Scholar
  14. Huntsberger, T.L., Mataric, M., and Pirjanian, P. 1999b. Action selection within the context of a robotic colony. In Proc. Sensor Fusion and Decentralized Control in Robotic Systems II, SPIE Vol. 3839, Boston, MA.Google Scholar
  15. Huntsberger, T.L., Pirjanian, P., and Schenker, P.S. 2001. Robotic outposts as precursors to a manned Mars habitat. In Proc. Space Technology and Applications International Forum (STAIF-2001), Albuquerque, NM, 46–51.Google Scholar
  16. Huntsberger, T.L., Pirjanian, P., Trebi-Ollennu, A., Das, H., Aghazarian, H., Ganino, A.J., Garrett, M.S., Joshi, S.S., and Schenker, P.S. 2002b. CAMPOUT: Tightly-coupled coordination of multi-robot systems for planetary surface exploration. IEEE Transactions on Systems, Man, & Cybernetics, in review.Google Scholar
  17. Huntsberger, T.L., Rodriguez, G., and Schenker, P.S. 2000c. Robotics challenges for robotic and human Mars exploration. In Proc. ROBOTICS2000, Albuquerque, NM, pp. 340–346.Google Scholar
  18. Iagnemma, K., Rzepniewski, A., Dubowsky, S., Huntsberger, T., and Schenker, P. 2000. Mobile robot kinematic reconfigurability for rough-terrain. In Proc. Sensor Fusion and Decentralized Control in Robotic Systems III, SPIE Vol. 4196, Boston, MA.Google Scholar
  19. Iagnemma, K., Rzepniewski, A., Dubowsky, S., and Schenker, P. 2001. Control of robotic vehicles with actively articulated suspensions in rough terrain. Autonomous Robots, in review.Google Scholar
  20. Jones, J.A. and Wu, J.J. 2000. Inflatable technology for robotics. In Proc. ASCE Robotics 2000 Conference, Albuquerque, NM.Google Scholar
  21. McKee, G.T., Fryer J.A., and Schenker, P.S. 2001. Object-oriented concepts for modular robotics systems. IEEE Transactions on Robotics and Automation, in review.Google Scholar
  22. McKee, G.T. and Schenker, P.S. 2000. Networked robotics. In Proc. Sensor Fusion and Decentralized Control in Robotic Systems III, SPIE Vol. 4196, Boston, MA.Google Scholar
  23. Pirjanian, P. 1999. Behavior Coordination Mechanisms—State-of-the-art. Tech-report IRIS–99–375, Institute for Robotics and Intelligent Systems, School of Engineering, University of Southern California.Google Scholar
  24. Pirjanian, P. 2000. Multiple objective behavior-based control. Journal of Robotics and Autonomous Systems, 31(1/2):53–60.Google Scholar
  25. Pirjanian, P., Huntsberger, T.L., and Schenker, P.S. 2001. Development of CAMPOUT and its further applications to planetary rover operations: A multirobot control architecture. In Proc. SPIE Sensor Fusion and Decentralized Control in Robotic Systems IV, Vol. 4571, Newton, MA.Google Scholar
  26. Pirjanian, P., Huntsberger, T.L., Trebi-Ollennu, A., Aghazarian, H., Das, H., Joshi, S., and Schenker, P.S. 2000. CAMPOUT: A control architecture for multi-robot planetary outposts. In Proc. Sensor Fusion and Decentralized Control in Robotic Systems III, SPIE Vol. 4196, Boston, MA.Google Scholar
  27. Pirjanian, P., Leger, C., Mumm, E., Kennedy, B., Garrett, M., Aghazarian, H., Schenker, P.S., and Farritor, S. 2002. Distributed control for a modular, reconfigurable cliff robot. In Proc. 2002 IEEE International Conf. on Robotics and Automation (ICRA2002), Washington, DC, pp. 3136–3141.Google Scholar
  28. Schenker, P.S., Bar-Cohen, Y., Brown, D.K., Lindemann, R.A., Garrett, M.S., Baumgartner, E.T., Lee, S., Lih, S.S., and Joffe, B.E. 1997a. A composite manipulator utilizing rotary piezoelectric motors: New robotic technologies for Mars in situ planetary science. In Proc. Smart Structures and Integrated Systems, SPIE Vol. 3041, San Diego, CA.Google Scholar
  29. Schenker, P.S., Baumgartner, E.T., Dorsky, L.I., Backes, P.G., Aghazarian, H., Norris, J.S., Huntsberger, T.L., Cheng, Y., Trebi-Ollennu, A., Garrett, M.S., Kennedy, B.A., Ganino, A.J., Arvidson, R.E., and Squyres, S.W. 2001b. FIDO: A field integrated design & operations rover for Mars surface exploration. In Proc. 6th Intl. Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS-'01), Montreal, Canada.Google Scholar
  30. Schenker, P.S., Baumgartner, E.T., Lee, S., Aghazarian, H., Garrett, M.S., Lindemann, R.A., Brown, D.K., Bar-Cohen, Y., Lih, S.S., Joffe, B., Kim, S.S., Hoffman, B.H., and Huntsberger, T.L. 1997b. Dexterous robotic sampling for Mars in situ science. In Proc. Intelligent Robotics and Computer Vision XVI, SPIE Vol. 3208, Pittsburgh, PA.Google Scholar
  31. Schenker, P.S., Baumgartner, E.T., Lindemann, R.A., Aghazarian, H., Zhu, D.Q., Ganino, A.J., Sword, L.F., Garrett, M.S., Kennedy, B.A., Hickey, G.S., Lai, A.S., Matthies, L.H., Hoffman, B.D., and Huntsberger, T.L. 1998. New planetary rovers for long range Mars science and sample return. In Proc. Intelligent Robotics and Computer Vision XVII, SPIE Vol. 3522, Boston, MA.Google Scholar
  32. Schenker, P.S., Blaney, D.L., Brown, D.K., Bar-Cohen, Y., Lih, S.S., Lindemann, R.A., Paljug, E.D., Slostad, J.T., Tharp, G.K., Tucker, C. E., Voorhees, C.J., Weisbin, C., Baumgartner, E.T., Singer, R.B., and Reid, R. 1995. Mars lander robotics and machine vision capabilities for in situ planetary science. In Proc. Intelligent Robots and Computer Vision XIV, SPIE Vol. 2588, Philadelphia, PA.Google Scholar
  33. Schenker, P.S., Huntsberger, T.L., Pirjanian, P., and McKee, G.T. 2001a. Robotic autonomy for space: Closely coordinated control of networked robots. In Proc. 6th International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS-'01), Montreal, Canada.Google Scholar
  34. Schenker, P.S., Huntsberger, T.L., Pirjanian, P., Trebi-Ollennu, A., Das, H., Joshi, S., Aghazarian, H., Ganino, A.J., Kennedy, B.A., and Garrett, M.S. 2000a. Robotwork crews for planetary outposts: Close cooperation and coordination of multiple mobile robots. In Proc. Sensor Fusion and Decentralized Control in Robotic Systems III, SPIE Vol. 4196, Boston, MA.Google Scholar
  35. Schenker, P.S., Pirjanian, P., Balaram, B., Ali, K.S., Trebi-Ollennu, A., Huntsberger, T.L., Aghazarian, H., Kennedy, B.A., Baumgartner, E.T., Iagnemma, K., Rzepniewski, A., Dubowsky, S., Leger, P.C., Apostolopoulos, D., and McKee, G.T. 2000b. Reconfigurable robots for all terrain exploration. In Proc. Sensor Fusion and Decentralized Control in Robotic Systems III, SPIE Vol. 4196, Boston, MA.Google Scholar
  36. Schenker, P.S., Sword, L.F., Ganino, A.J., Bickler, D.B., Hickey, G.S., Brown, D.K., Baumgartner, E.T., Matthies, L.H., Wilcox, B.H., Balch, T., Aghazarian H., and Garrett, M.S. 1997c. Lightweight rovers for Mars science exploration and sample return. In Proc. Intelligent Robotics and Computer Vision XVI, SPIE Vol. 3208, Pittsburgh, PA.Google Scholar
  37. Schenker et al. 2000c. In Situ Exploration of Mars: The FIDO Rover, 6:30 min narrated NASA video, JPL-Photographic Imaging Group.Google Scholar
  38. Shirley, D.L. and Matijevic, J.R. 1997. Mars rovers: Past, present, and future. In Proc. Princeton Space Studies Inst. 20th Anniversary Conf. Google Scholar
  39. Shirley, D.L. et al. 1997. The Pathfinder Microrover. Journal of Geophysical Research, 102(E2):3989–4001.Google Scholar
  40. Trebi-Ollennu, A., Das, H., Aghazarian, H., Ganino, A., Pirjanian, P., Huntsberger, T., and Schenker, P. 2002. Mars rover pair cooperatively transporting a long payload. In Proc. 2002 IEEE International Conf. on Robotics and Automation (ICRA2002), Washington, DC, May 11û15, 2002, pp. 3136–3141.Google Scholar
  41. Volpe, R.A., Baumgartner, E.T., Schenker, P.S., and Hayati, S.A. 2000. Technology development and testing for enhanced Mars rover sample return operations. In Proc. of the IEEE Aerospace Conference 2000, Big Sky, MT.Google Scholar
  42. Weisbin, C.R., Rodriguez, G., Schenker, P.S., Das, H., Hayati, S.A., Baumgartner, E.T., Maimone, M., Nesnas, I.A., and Volpe, R.A. 1999. Autonomous rover technology for Mars sample return. In Proc. 5th International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS'99), Noordwijk, The Netherlands.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Paul S. Schenker
    • 1
  • Terry L. Huntsberger
    • 1
  • Paolo Pirjanian
    • 1
  • Eric T. Baumgartner
    • 1
  • Eddie Tunstel
    • 1
  1. 1.Jet Propulsion LaboratoryPasadenaUSA

Personalised recommendations