Studia Geophysica et Geodaetica

, Volume 47, Issue 1, pp 185–202 | Cite as

Köppen Climate Types in Observed and Simulated Climates

  • Jaroslava Kalvová
  • Tomáš Halenka
  • Klára Bezpalcová
  • Ivana Nemešová
Article

Abstract

The Köppen climate classification was applied to the observed gridded climatological sets and the outputs of four general circulation models (GCMs) over the continents of the Earth. All data had been acquired via the Data Distribution Centre established by the Intergovernmental Panel on Climate Change. The ability of the GCMs to simulate the Köppen climate zones identified in the real data was explored and possible future (global warming) changes in the climate types' distribution for each GCM were assessed. Differences in the area distributions derived from the GCMs' recent climate simulations give evidence about uncertainties generally involved in climate models. As to the global warming simulations, all GCM projections of warming climate (horizon 2050) show that the zones representing tropical rain climates and dry climates become larger, and the zones identified with boreal forest and snow climates together with the polar climates are smaller.

Köppen climate classification general circulation models ECHAM4 HadCM2 climate projections 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartholomew J.G. and Herbertson A.J., 1899. Bartholomew's Physical Atlas-Volume III: Atlas of Meteorology. The Royal Geographical Society, Archibald Constable & Co., Westminster.Google Scholar
  2. Baur F., 1936. Wetter, Witterung, Grosswetter and Weltwetter. Z. Angew. Met., 36, 377-381.Google Scholar
  3. Boer G.J., Flato G., Reader M.C. and Ramsden D., 2000. A Transient Climate Change Simulation with Greenhouse Gas and Aerosol Forcing: Experimental Design and Comparison with the Instrumental Record for the Twentieth Century. Clim. Dyn., 16, 405-427.Google Scholar
  4. Carter T.R., Hulme M. and Lal M., 1999a. IPCC-TGCIA Guidelines on the Use of Scenario Data for Climate Impact and Adaptation Assessment. Version 1. IPCC, Task Group on Scenarios for Impact Assessment, 69 pp.Google Scholar
  5. Carter T.R., Hulme M. and Viner D. (eds), 1999b. Representing Uncertainty in Climate Change Scenarios and Impact Studies. ECLAT-2 Report No.1, Helsinki Workshop (April 14-16, 1999), CRU, Norwich, UK, 128 pp.Google Scholar
  6. Hann J., 1908: Handbuch der Klimatologie. I. Band: Allgemeine Klimalehre. Stuttgart, Engelhorn, 394 pp.Google Scholar
  7. Hann J., 1910. Handbuch der Klimatologie. II. Band: Klimatographie. Stuttgart, Engelhorn, 426 pp.Google Scholar
  8. Hann J., 1911. Handbuch der Klimatologie. III. Band: Klimatographie. Stuttgart, Engelhorn, 713 pp.Google Scholar
  9. Hirst A.C., O'Farrell S.P., Siobhan P. and Gordon H.B., 2000. Comparison of a Coupled Ocean-Atmosphere Model with and without Oceanic Eddy-Induced Advection. 1. Ocean Spinup and Control Integrations. J. Clim., 13, 139-163.Google Scholar
  10. Houghton J.T., Ding Y., Griggs D.J., Noguer M., van der Linden P.J. and Xiaosu D. (eds), 2001. Climate Change 2001: The Scientific Basis. Cambridge Univ.Press, 944 pp.Google Scholar
  11. Huth R., 1997. Continental Scale Circulation in the UKHI GCM. J. Clim., 10, 1545-1561.Google Scholar
  12. Huth R., Kyselý J and Pokorná L., 2000. A GCM Simulation of Heat Waves, Dry Spells, and Their Relationships to Circulation. Clim. Change, 46, 29-60.Google Scholar
  13. Johns T.C., Carnell R.E., Crossley J.M., Gregory J.M., Mitchell J.F.B., Senior C.A., Tett S.F.B. and Wood R.A., 1997. The Second Hadley Centre Coupled Ocean-Atmosphere GCM: Model Description, Spinup and Validation. Clim. Dyn., 13, 103-134.Google Scholar
  14. Kalvová J. and Nemešová I., 1997. Projections of Climate Change for the Czech Republic. Clim. Change, 36, 41-64.Google Scholar
  15. Kalvová J. and Nemešová I., 1998. Estimating Autocorrelations of daily Extreme Temperatures in Observed and Simulated Climates. Theor. Appl.Climatol., 59, 151-164.Google Scholar
  16. Kalvová J. (ed.), 2000. Regular Monitoring of Climate Change, Estimating Changes in both the Variability and Occurencies of Extreme Weather Events, and Refining Climate Change Scenarios for the CR Territory. Report within Project VaV/740/1/00: Research in assessing impacts of climate change due to the increasing greenhouse effect in the Czech Republic. Ministry of Environment of the Czech Republic, Prague (in Czech).Google Scholar
  17. Köppen W., 1923. Die Klimate der Erde-Grundriss der Klimakunde. Walter de Gruyter & Co., Berlin, Leipzig, 369 pp.Google Scholar
  18. Köppen W., 1931. Grundriss der Klimakunde. (Zweite, verbesserte Auflage der Klimate der Erde.) Walter de Gruyter & Co., Berlin, Leipzig, 388 pp.Google Scholar
  19. Lamb H.H., 1972. Climate: Present, Past and Future. Methuen & Co. Ltd., London, 613 pp.Google Scholar
  20. Lohmann U., Sausen R., Bengtsson L., Cubash U., Perlwitz J. and Roekner E., 1993. The Köppen Climate Classification as a Diagnostic Tool for General Circulation Models. Clim. Res., 3, 177-193.Google Scholar
  21. Manabe S. and Holloway J.L., 1975. The Seasonal Variation of the Hydrological Cycle as Simulated by a Global Model of the Atmosphere. J. Geophys. Res., 80, 1617-1649.Google Scholar
  22. McCarthy J.J., Canziani O.F., Leary N.A., Dokken D.J. and White K.S. (eds), 2001. Climate Change 2001: Impacts, Adaptation and Vulnerability. Cambridge Univ. Press, 1000 pp.Google Scholar
  23. Mitchell J.F.B. and Johns T.C., 1997. On Modification of Global Warming by Sulphate Aerosols. J. Clim., 10, 245-267.Google Scholar
  24. Nakicenovic N. and Swart R. (eds), 2000. Emission Scenarios. Cambridge Univ. Press, 612 pp.Google Scholar
  25. Nemešová I. and Kalvová J., 1997. On the Validity of ECHAM-Simulated Daily Extreme Temperatures. Stud. Geophys.Geod., 41, 396-406Google Scholar
  26. New M., Hulme M. and Jones P., 1999. Representing Twentieth-Century Space-Time Climate Variability. Part I: Development of a 1961-1990 Mean Monthly Terrestrial Climatology. J. Clim., 12, 829-856.Google Scholar
  27. Reader M.C. and Boer G.J., 1998. The Modification of Greenhouse Gas Warming by Direct Effect of Sulphate Aerosols. Clim. Dyn.,, 14, 593-607.Google Scholar
  28. Roeckner E., Arpe K., Bengtsson L., Christoph M., Claussen M., Duemenil L., Esch M., Giorgetta M., Schlese U. and Schulzweida U., 1996. The Atmospheric General Circulation Model ECHAM-4: Model Description and Simulation of Present-Day Climate. Max Planck Institute for Meteorology, Report No. 218, Hamburg, Germany, 90 pp.Google Scholar
  29. Saaty T., 1978. Exploring the Interface Between Hierarchies, Multiple Objectives and Fuzzy Sets. Fuzzy. Sets Syst., 1, 57-68.Google Scholar
  30. Smith J.B., Huq S., Lenhart S., Mata L.J., Nemešová I. and Toure S., 1996. Vulnerability and Adaptation to Climate Change. Kluwer Academic Publishers, 366 pp.Google Scholar
  31. Viner D. and Mayer L., 1994. Climate Change Scenarios for Impact Studies in the UK. Report, Contract No PECD 7/12/96, CRU, Norwich, University of East Anglia, 70 pp.Google Scholar
  32. Watson R.T., Zinyowera M.C., Moss R.H. and Dokken D.J. (eds), 1996. Climate Change 1995: Impacts, Adaptations and Mitigation of Climate Change. Cambridge Univ. Press, 878 pp.Google Scholar
  33. Zhang X.-H., Oberhuber M.J., Bacher A. and Roeckner E., 1998. Interpolation of Interbasin Exchange in an Isopycnal. Ocean. Clim. Dyn., 14, 725-740.Google Scholar

Copyright information

© StudiaGeo s.r.o. 2003

Authors and Affiliations

  • Jaroslava Kalvová
    • 1
  • Tomáš Halenka
    • 1
  • Klára Bezpalcová
    • 1
  • Ivana Nemešová
    • 2
  1. 1.Department of Meteorology and Environment Protection, Faculty of Mathematics and PhysicsCharles UniversityPrague 8Czech Republic
  2. 2.Institute of Atmospheric PhysicsAcad. Sci. Czech Rep.Prague 4Czech Republic

Personalised recommendations