Advertisement

Water Resources Management

, Volume 16, Issue 6, pp 469–487 | Cite as

Uncovering Spatio-Temporal Patterns in Environmental Data

  • Monica WachowiczEmail author
Article

Abstract

The integration of data mining and geographic visualization techniques facilitates the identification and the interpretationof spatio-temporal patterns – a process recognized as knowledge construction. Knowledge construction is a dynamic process of manipulating 'data' to find, relate, and interpret interestingpatterns in large environmental data sets. Toward this end, anoverview of the main methods associated with the expanding fieldsof Knowledge Discovery in Databases (KDD) and Geographic Visualization (GeoVis) is provided. The paper explains how different methods can be combined in order to design a knowledgeconstruction process for the identification and interpretation of the space-time variability of both composition and structureof a pattern. Case studies, tools and prototype implementationsare described for illustrating how both KDD and GeoVis methods can be applied to uncovering spatio-temporal patterns. Finally,the specific underlying research issues are described, with particular emphasis on how these relate to the environmental sciences domain.

data mining geographic visualization knowledge construction process 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, R., Imielinski, T. and Swami, A.: 1993, Mining Association Rules between Sets of Items in Large Databases, ACM SIGMOD, pp. 207–216.Google Scholar
  2. Behnke, J., Dobbinson, E., Graves, S., Hinke, T., Nichols, D. and Stolorz, P.: 1999, ‘NASA Workshop on Issues in the Application of Data Mining to Scientific Data', Final Report, Goddard Space Flight Center, U.S.A.Google Scholar
  3. Berger, J. O.: 1985, Statistical Decision Theory and Bayesian Analysis, Springer-Verlag, New York.Google Scholar
  4. Brachman, R. J. and Anand, T.: 1996, ‘The Process of Knowledge Discovery in Databases', in U. Fayyad, G. Piatetsky-Shapiro, P. Smyth and R. Uthurusamy (eds), Knowledge Discovery and Data Mining, AAAI Press/The MIT Press, Menlo Park, CA, pp. 37–57.Google Scholar
  5. Brodlie, K. W., Duce, D. A., Gallop, J. R. and Wood, J. D.: 1998, ‘Distributed Cooperative Visualization', in A. A. Sousa and F. R. A. Hopgood (eds), State of the Art Reports at Eurographics98, Eurographics Association, pp. 27–50.Google Scholar
  6. Chen, M., Han, J. and Yu, P. S.: 1996, ‘Data Mining: An Overview from a Database Perspective', IEEE Transactions on Knowledge and Data Engineering 8, pp. 866–883.Google Scholar
  7. DiBiase, D.: 1990, Visualization in the Earth Sciences, Earth and Mineral Sciences. Bulletin of the College of Earth and Mineral Sciences, Penn State University, Vol. 59, 2, pp. 13–18.Google Scholar
  8. Dykes, J.: 1997, Exploring Spatial Data Representation with Dynamic Graphics, Computers & Geosciences, Vol. 23(4), Special Issue on Exploratory Cartographic Visualization, pp. 345–370.Google Scholar
  9. Ester, M., Kriegel, H.-P. and Sander, J.: 1998, ‘Algorithms for Characterization and Trend Detection in Spatial Databases', Proceedings 4th International Conference on Knowledge Discovery and Data Mining (KDD’ 98), New York, NY, U.S.A., pp. 44–50.Google Scholar
  10. Fayyad, U., Piatetsky-Shapiro, G. and Smyth, P.: 1996, ‘From Data Mining to Knowledge Discovery: An Overview', in U. Fayyad, G. Piatetsky-Shapiro, P. Smyth and R. Uthurusamy (eds), Advances in Knowledge Discovery and Data Mining, AAAI Press/The MIT Press, Menlo Park, CA, pp. 1–34.Google Scholar
  11. Fotheringham, A. S. and Charlton, M.: 1994, ‘GIS and Exploratory Data Analysis: An Overview of Some Basic Research Issues', Geograph. Syst. 1(4), 315–327.Google Scholar
  12. Frawley, W. J., Piatetsky-Shapiro, G., Matheus, C. J. and Smyth, P.: 1991, ‘Knowledge Discovery in Databases: An Overview'. in G. Piatetsky-Shapiro and B. Frawley (eds), Knowledge Discovery and Data Mining, AAAI Press/The MIT Press, Cambridge, Mass, pp. 1–27.Google Scholar
  13. Gahegan, M. N.: 1996, ‘Visualization Strategies for Exploratory Spatial Analysis', Proceedings Third International Conference on GIS and Environmental Modeling, Santa Fe, New Mexico, U.S.A., URL: http://www.geog.psu.edu/ ~mark/santafe.htmlGoogle Scholar
  14. Glymour, C., Madigan, D., Pregibon, D. and Smyth, P.: 1997, ‘Statistical Themes and Lessons for Data Mining', Data Mining and Knowledge Discovery 1, 11–28.Google Scholar
  15. Han, J.: 1995, ‘Mining Knowledge at Multiple Concept Levels', Proceedings 4th International Conference on Information and Knowledge Management, Baltimore, Maryland, U.S.A., pp. 19–24.Google Scholar
  16. Han, J. and Fu, Y.: 1996, ‘Exploration of the Power of Attribute-oriented Induction in Data Mining', in U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth and R. Uthurusamy (eds), Advances in Knowledge Discovery and Data Mining, AAAI Press/The MIT Press, Menlo Park, CA, pp. 399–421.Google Scholar
  17. Han, J., Fu, Y., Wang, W., Chiang, J., Gong, W., Koperski, K. D. L. Lu, Y., Rajan, A., Stefanovic, N., Xia, B. and Zaiane, O. R.: 1996, ‘DBMiner: A System for Mining Knowledge in Large Relational Databases', Proceeedings of International Conference on Mining and Knowledge Discovery (KDD 1996), Portland, Oregan, U.S.A., pp. 250–255.Google Scholar
  18. Han, J., Koperski, K. and Stefanovic, N.: 1997, ‘GeoMiner: A System Prototype for Spatial Mining', Proceedings, 1997 ACM-SIGMOD International Conference on Management of Data (SIGMOD’ 97), Tuscon, AZ, U.S.A., URL: http://db.cs.sfu.ca/sections/publication/kdd/kdd.htmlgeGoogle Scholar
  19. Hao, M. Dayal, U., Hsu, M. Baker, J. and D'Eletto, R.: 1999, ‘A Java-based Visual Mining Infrastructure and Applications', IEEE InfoVis'99, San Francisco, CA, U.S.A., pp. 124–127.Google Scholar
  20. Harinarayan, V., Rajaraman, A. and Ullman, J. D.: 1996, ‘Implementing Data Cubes Efficiently', Proceedings of ACM-SIGMOD on Management of Data, Montreal, Canada, pp. 205–216.Google Scholar
  21. Harman, G.: 1965, ‘The Inference to the Best Explanation', Philosophical Review 74, pp. 88–95.Google Scholar
  22. Hinneburg, A., Keim, D. and Wawryniuk, M.: 1999, ‘HD-Eye: Visual Mining of High Dimensional Data', IEEE Computer Graphics and Applications, September/October 1999, pp. 22–31.Google Scholar
  23. Hempel, C.: 1965, Aspects of Scientific Explanation, Free Press, New York.Google Scholar
  24. Holsheimer, M., Kerten, M. L. and Siebes, A.: 1996, ‘Exploration of the Power of Attribute-oriented Induction in Data Mining', in U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth and R. Uthurusamy (eds), Advances in Knowledge Discovery and Data Mining, AAAI Press/The MIT Press, Menlo Park, CA, pp. 447–467.Google Scholar
  25. Hosking, J. R. M., Pednault, E. P. D. and Sudan, M.: 1997, ‘A Statistical Perspective on Data Mining', Future Generation Computer Systems 13, 117–134.Google Scholar
  26. Inselberg, A. and Avidan, T.: 1999, The Automated Multidimensional Detective. IEEE InfoVis’ 99, San Francisco, CA, U.S.A., pp. 112–119.Google Scholar
  27. Keim, D. and Kriegel, H.-P.: 1994, ‘VisDB: Database Exploration using Multidimensional Visualization', Computer Graphics and Applications, September 1994, pp. 44–49.Google Scholar
  28. Knorr, E. M. and Ng, R. T.: 1996, ‘Finding Aggregate Proximity Relationships and Commonalities in Spatial Data Mining', IEEE Transactions on Knowledge and Data Engineering 8(6), 884–897.Google Scholar
  29. Koperski, K. and Han, J.: 1995, ‘Discovery of Spatial Association Rules in Geographic Information Databases', Proceedings International Symposium on Large Spatial Databases (SSD’ 95), Portland, Maine, U.S.A., pp. 47–66.Google Scholar
  30. Koperski, K., Han, J. and Adhikary, J.: 1999, ‘Mining Knowledge in Geographic Data', Comm. ACM, URL: http://db.cs.sfu.ca/sections/publication/kdd/kdd.htmlGoogle Scholar
  31. Kraak, M.-J. and MacEachren, A. M. (eds.): 1999, International Journal of Geographic Information Science: Special Issue on Exploratory Cartographic Visualization, Vol. 13(4).Google Scholar
  32. Lee, H. Y. and Ong, H. L.: 1996, ‘Visualization Support for Data Mining', IEEE Expert Intelligent Systems and their Applications 11(5), 69–75.Google Scholar
  33. MacDougall, E. B.: 1992, ‘Exploratory Analysis, Dynamic Statistical Visualization and Geographic Information Systems', Cartography and Geographical Information Systems 19(4), 237–246.Google Scholar
  34. MacEachren, A. M.: 1995, How Maps Work: Representation, Visualization and Design, Guilford Press.Google Scholar
  35. MacEachren, A. M.: 1992, ‘Visualization', in R. Abler, M. Marcus and J. Olson (eds), Geography's Inner Worlds: Pervasive Themes in Contemporary American Geography, Rutgers University Press, New Brunswick, NJ, pp. 99–137.Google Scholar
  36. MacEachren, A. M., Wachowicz, M., Edsall, R., Haug, D. and Masters, R.: 1999, ‘Constructing Knowledge from Multivariate Spatio-temporal Data: Integrating Geographical Visualization with Knowledge Discovery in Database Methods', Internat. J. Geogr. Inform. Sci. 13(4), 311–334.Google Scholar
  37. Mitchell, T. M.: 1997, Machine Learning, McGraw Hill, New York, U.S.A.Google Scholar
  38. Monmonier, M.: 1991, ‘Ethics and Map Design: Six Strategies for Confronting the Traditional One-map Solution', Cartogr. Perspect. 10, 3–8.Google Scholar
  39. Murthy, S.: 2001, On Growing Better Decision Trees from Data,URL: http://www.tigr.org/ ~salzberg/murthy_thesis/survey/survey.htmlGoogle Scholar
  40. Ng, R. and Han, J.: 1994, ‘Efficient and Effective Clustering Method for Spatial Data Mining', Proceedings International Conference on VLDB, Santiago, Chile, pp. 144–155.Google Scholar
  41. Park, J. S., Chen, M. S. and Yu, P. S.: 1995, ‘An Effective Hash-based Algorithm for Mining Association Rules', Proceedings ACM-SIGMOD on Management of Data, San Jose, California, U.S.A., pp. 175–186.Google Scholar
  42. Roddick, J. F. and Spiliopoulou, M.: 1999, A Bibliography of Temporal, Spatial and Spatio-temporal Data Mining Research. SIGKDD Explorations, Vol. 1(1), URL: http://www.cis.unisa.edu.au/ ~cisjfr/STDMPapersGoogle Scholar
  43. Rumelhart, D. E. and Norman, D. A.: 1985, ‘Representation of Knowledge', in A. M. Aitkenhead and J. M. Slack (eds), Issues in Cognitive Modelling, Erlbaum, pp. 15–62.Google Scholar
  44. Savasere, A., Omiecinski, E. and Navathe, S.: 1995, ‘An Efficient Algorithm for Mining Association Rules in Large Databases', Proceedings of International Conference on VLDB, Zurich, Switzerland, pp. 37–45.Google Scholar
  45. Simoudis, E., Livezey, B. and Kerber, R.: 1996, ‘Integrating Inductive and Deductive Reasoning for Data Mining', in U. Fayyad, G. Piatetsky-Shapiro, P. Smyth and R. Uthurusamy (eds), Advances in Knowledge Discovery and Data Mining, AAAI Press/The MIT Press, Menlo Park, CA, pp. 353–374.Google Scholar
  46. Slortz, P., Nakamura, H., Mesrobian, E., Muntz, R. R., Shek, C., Santos, J. R., Yi, J., Ng, K., Chien, S., Mechoso, C. R. and Farrara, J. D.: 1995, ‘Fast Spatiotemporal Data Mining of Large Geophysical Data Sets', Proceedings of the First Conference on Knowledge Discovery and Data Mining, Montreal, Canada, pp. 87–101.Google Scholar
  47. Stutz, J. and Cheeseman, P.: 1994, ‘AutoClass – A Bayesian Approach to Classification', in J. Skilling and S. Sibisi (eds), Maximum Entropy and Bayesian Methods, Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  48. Tang, Q.: 1992, A Personal Visualization System for Visual Analysis of Area-Based Spatial Data: Proc. GIS/LIS’ 92, Vol. 2, American Society for Photogrammetry and Remote Sensing, Bethesda, Maryland, U.S.A., pp. 767–776.Google Scholar
  49. Uthurusamy, R.: 1996, ‘From Data Mining to Knowledge Discovery: Current Challenges and Future Directions', in U. Fayyad, G. Piatetsky-Shapiro, P. Smyth and R. Uthurusamy (eds), Advances in Knowledge Discovery and Data Mining, AAAI Press/The MIT Press, Menlo Park, CA, pp. 561–572.Google Scholar
  50. Wachowicz, M.: 2000a, ‘How can Knowledge Discovery Methods Uncover Spatio-temporal Patterns in Environmental Data?', in B. V. Dasarath (ed.), Data Mining and Knowledge Discovery: Theory, Tools, and Technology II, Proceedings of SPIE, Vol. 4057 (2000), pp. 221–229.Google Scholar
  51. Wachowicz, M.: 2000b, ‘The Role of Geographic Visualisation and Knowledge Discovery in Spatio-temporal Data Modelling', in H. Heres (ed.), Time in GIS: Issues in Spatio-temporal Modelling, Publications in Geodesy 47, pp. 13–26.Google Scholar
  52. Wachowicz, M.: 2001, GeoInsight: An Approach for Developing a Knowledge Construction Process Based on the Integration of GVis and KDD Methods', in H. J. Miller and J. Han (eds), Geographic Data Mining and Knowledge Discovery, Taylor & Francis, London.Google Scholar
  53. Wang, W., Yang, J. and Muntz, R.: 1997, ‘STINGA: Statistical Information Grid Approach to Spatial Data Mining', Proceedings of the 23rd VLDB Conference, Athens, Greece, pp. 186–196.Google Scholar
  54. Wise, S., Haining, R. and Signoretta, P.: 1998, ‘The Role of Visualization for Exploratory Spatial Data Analysis of Area-based Data', Proc. Fourth International Conference on Geocomputation (GeoComputation’ 98), Bristol, U.K., URL: http://www.geog.port.ac.uk/geocomp/geo98Google Scholar
  55. Wong, P. C.: 1999, ‘Visual Data Mining', IEEE Computer Graphics and Applications 19(5), 20–21.Google Scholar
  56. Zhang, T., Ramakrishnan, R. and Linvy, M.: 1996, ‘BIRCH an Efficient Data Clustering Method for Very Large Databases’, Proceedings ACM-SIGMOD on Management of Data, Montreal, Canada, pp. 103–114.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  1. 1.Wageningen UR, Centre for Geo-InformationWageningenThe Netherlands

Personalised recommendations