Brain Topography

, Volume 11, Issue 2, pp 141–151 | Cite as

Source Localization of P300 from Oddball, Single Stimulus, and Omitted-Stimulus Paradigms

  • Ina M. Tarkka
  • Dobrivoje S. Stokic
Article

Abstract

Three different auditory stimulus paradigms were used to elicit P300 potentials. Normal subjects were tested on the classical rare target stimulus, single-stimulus and omitted-stimulus conditions. Noninvasive identification of the cerebral sources of the event-related potentials (ERPs) was performed using spatio-temporal multiple dipole modeling (BESA software) with individually sized spherical head models. The grand average data of each condition was first independently modeled and these models were used as starting values for modeling each individual subject's data. Models for the rare-stimulus condition and single-stimulus condition both consisted of 6 dipoles. Models for the omitted-stimulus condition consisted of 2 dipoles. The dipole locations of the final individual 6-dipole models for the rare and single-stimulus conditions did not differ significantly from each other or from one previous result obtained from a another group of subjects (Tarkka et al. 1995). Super-imposition of the dipole coordinates on the sterotaxic brain atlas suggests that bilateral deep medial temporal lobe structures are the major contributors to rare and single-stimulus P300s. Because both the wave form morphology and the source model of the P300 elicited by single stimulus were close to those of the rare-stimulus P300 it may be that the underlying neural mechanisms eliciting these P300 potentials are essentially the same.

Event-related potentials Human P300 Equivalent electric dipole Neural generators Noninvasive source analysis Medial temporal lobe Hippocampus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barry, R.J. and O'Gorman, J.G. Stimulus omission and the orienting response: latency differences suggest different mechanisms. Biol. Psychol., 1987, 25: 261–276.Google Scholar
  2. Courchesne, E., Hillyard, S.A. and Galambos, R. Stimulus novelty, task relevance and the visual evoked potential man. Electroenceph. clin. Neurophysiol., 1975, 39: 131–143.Google Scholar
  3. Halgren, E., Baudena, P., Clarke, J.M., Heit, G., Marinkovic, K. Devaux, B., Vignal, J. and Biraben, A. Intracerebral potentials to rare target and distractor auditory and visual stimuli. II. Medial, lateral and posterior temporal lobe. Electroenceph. clin. Neurophysiol., 1995, 94: 229–250.Google Scholar
  4. Halgren, E., Squires, N.K., Wilson, C.L., Rohrbaugh, J.W., Babb, T.L. and Crandall, P.H. Endogenous potentials generated in the human hippocampal formation and amygdala by infrequent events. Science, 1980, 210: 803–805.Google Scholar
  5. Hamon, J.F., Gauthier, P. and Gottesmann, C. Influence of instructions in multi-discrimination experiments on event-related potentials. Physiol. Bohemos., 1989, 38: 231–240.Google Scholar
  6. Iwanami, A., Kamijima, K. and Yoshizawa, J. P300 component of event-related potentials in passive tasks. Int. J. Neuroscience, 1996, 84: 121–126.Google Scholar
  7. Johnson, R., Jr. Auditory and visual P300s in temporal lobectomy patients: Evidence for modality-dependent generators. Psychophysiol., 1989, 26: 633–650.Google Scholar
  8. Knight, R.T., Scabini, D., Woods, D.L. and Clayworth, C. The effects of lesions of superior temporal gyrus and inferior parietal lobe on temporal and vertex components of the human AEP. Electroenceph. clin. Neurophysiol., 1988, 70: 499–509.Google Scholar
  9. Knight, R.T. Decreased response to novel stimuli after prefrontal lesions in man. Electroenceph. clin. Neurophysiol., 1984, 59: 9–20.Google Scholar
  10. Knight, R.T., Scabini, D., Woods, D.L. and Clayworth, C. Contributions of the temporal parietal junction to the human auditory P300. Brain Res., 1989, 13: 109–116.Google Scholar
  11. Kropotov, J.D. and Ponomarev, V.A. Subcortical neuronal correlates of component P300 in man. Electroenceph. clin. Neurophysiol., 1991, 78: 40–49.Google Scholar
  12. McCarthy, G., Wood, C.C., Williamson, P.D. and Spencer, D.D. Task-dependent field potentials in human hippocampal formation. J. Neurosci., 1989, 9(12): 4253–4268.Google Scholar
  13. Mecklinger, A. and Ullsperger, P. The P300 to novel and target events: a spatio-temporal dipole model analysis. Neuroreport, 1995, 7: 241–245.Google Scholar
  14. Mertens, R. and Polich, J. P300 from a single-stimulus paradigm: passive versus active tasks and stimulus modality. Electroenceph. clin. Neurophysiol., 1997, 104: 488–497.Google Scholar
  15. Okada, Y.C., Kaufman, L. and Williamson, S.J. The hippocampal formation as a source of the slow endogenous potentials. Electroenceph. clin. Neurophysiol., 1983, 55: 417–426.Google Scholar
  16. O'Donnell, B.F., Friedman, S., Swearer, J. and Drachman, D. Active and passive P3 latency and psychometric performance: influence of age and individual differences. Int. J. Psychophysiol., 1992, 12: 187–195.Google Scholar
  17. Paller, K.A., McCarthy, G., Roessler, E., Allison, T. and Wood, C.C. Potentials evoked in human and monkey medical temporal lobe during auditory and visual oddball paradigms. Electroenceph. clin. Neurophysiol., 1992, 84: 269–279.Google Scholar
  18. Papanicolaou, A.C., Baumann, S.B. and Rogers, R.L. Source estimation of late components of omitted tone evoked magnetic fields. In: M. Hoke, S.N. Erne, Y.C. Okada and G.L. Romani (Eds), Biomagnetism: Clinical Aspects, Elsevier, Amsterdam, 1992: 177–180.Google Scholar
  19. Polich, J. and McIsaac, H. Comparison of auditory P300 habituation from active and passive conditions. Int. J. Psychophysiol., 1994, 17(1): 25–34.Google Scholar
  20. Polich, J., Eischen, S.E. and Collins, G.E. P300 from a single auditory stimulus. Electroenceph. clin. Neurophysiol., 1994, 92: 253–261.Google Scholar
  21. Polich, J. and Squire, L.R. P300 from amnestic patients with bilateral hippocampal lesions. Electroenceph. clin. Neurophysiol., 1993, 86: 408–417.Google Scholar
  22. Raij, T., Mäkelä, J.P. McEvoy, L. and Hari, R. Human auditory cortex is activated by omissions of auditory stimuli. 10th International Conference of Biomagnetism, Santa Fe, NM, 1996: 83.Google Scholar
  23. Rogers, R.L., Taylor, S.A., Akhtari, M. and Sutherling, W.W. Laterality of hippocampal responses to infrequent and unpredictable omissions of visual stimuli. 10th International conference on Biomagnetism, Santa Fe, NM, 1996: 85.Google Scholar
  24. Rogers, R.L., Papanicolaou, A.C., Baumann, S.B. and Eisenberg, H.M. Late magnetic fields and positive evoked potentials following infrequent and unpredictable omissions of visual stimuli. Electroenceph. clin. Neurophysiol., 1992, 83: 146–152.Google Scholar
  25. Rogers, R.L., Papanicolaou, A.C., Baumann, S.B. Bourbon, W.T., Alagarsamy, S. and Eisenberg, H.M. Localization of P3 sources using magnetoencephalography and magnetic resonance imaging. Electroenceph. clin. Neurophysiol., 1991, 79: 308–321.Google Scholar
  26. Scabini, D., Knight, R. and Woods, D.L. Frontal lobe contributions to the human P3a. Soc. Neurosci. Abstr., 1989, 15: 477.Google Scholar
  27. Scherg, M. and von Cramon, D. Evoked dipole source potentials of the human auditory cortex. Electroenceph. clin. Neurophysiol., 1986, 65: 344–360.Google Scholar
  28. Scherg, M., Vajsar, J. and Picton, T.W. A source analysis of the late human auditory evoked potentials. J. Cogn. Neurosci., 1989, 1: 336–355.Google Scholar
  29. Scherg, M. Functional imaging and localization of electromagnetic brain activity. Brain Topography, 1992, 5(2): 103–111.Google Scholar
  30. Scherg, M. Spatio-temporal modeling of early auditory evoked potentials. Rev. Laryngol., 1984, 105: 163–170.Google Scholar
  31. Scherg, M. and Berg, P. Brain Electrical Source Analysis Handbook, 1994, Version 2.0.Google Scholar
  32. Scherg, M. and Buchner, H. Somatosensory evoked potentials and magnetic fields: separation of multiple source activities. Physiol. Measurements, 1993, 14: A35–A39.Google Scholar
  33. Simson, R., Vaughan, H.G. and Ritter, W. The scalp topography of potentials associated with missing visual or auditory stimuli. Electroenceph. clin. Neurophysiol., 1976, 40: 33–42.Google Scholar
  34. Smith, M.E., Halgren, E., Sokolik, M., Baudena, P., The intracranial topography of the P3 event-related potential elicited during auditory oddball. Electroenceph. clin. Neurophysiol., 1990, 76: 235–248.Google Scholar
  35. Squires, N.K., Sanders, D. and Wanser, R. Comparison of attend and non-attend paradigms for the evaluation of ERP changes in normal aging and neurological dysfunction. 8th International Conference on Event-Related Potentials of the Brain, Stanford, CA, 1986.Google Scholar
  36. Srisa-an, P., Lei, L. and Tarkka, I.M. Middle latency somatosensory evoked potentials; noninvasive source analysis. J. Clin. Neurophysiol., 1996, 13(2): 156–163.Google Scholar
  37. Stapleton, J.M., O'Reilly, T. and Halgren, E. Endogenous potentials evoked in simple cognitive tasks: scalp topography. Intern. J. Neurosci., 1987, 36: 75–87.Google Scholar
  38. Sutton, S., Tueting, P., Zubin, J. and John, E.R. Information delivery and the sensory evoked potential. Science, 1967, 155: 1436–1439.Google Scholar
  39. Talairach, J. and Tournoux, P. Co-Planar Stereotaxic Atlas of the Human Brain. Thieme Medical Publishers, Inc., New York, NY, 1988.Google Scholar
  40. Tarkka, I.M. Electrical source localization of human movement-related cortical potentials. Intern. J. Psychophysiol., 1994, 16: 81–88.Google Scholar
  41. Tarkka, I.M., Micheloyannis, S. and Stokic, D.S. Generators for the human P300 elicited by somatosensory stimuli using multiple dipole source analysis. Neuroscience, 1996, 75(1): 275–287.Google Scholar
  42. Tarkka, I.M., Stokic, D.S., Basile, L.F.H. and Papanicolaou, A.C. Electric source localization of the auditory P300 agrees with magnetic source localization. Electroenceph. clin. Neurophysiol., 1995, 96: 538–545.Google Scholar
  43. Yamaguchi, S. and Knight, R.T. P300 generation by novel somatosensory stimuli. Electroenceph. clin. Neurophysiol., 1991, 78: 50–55.Google Scholar

Copyright information

© Human Sciences Press, Inc. 1998

Authors and Affiliations

  • Ina M. Tarkka
    • 1
    • 2
  • Dobrivoje S. Stokic
    • 3
  1. 1.Department of NeurosurgeryUniversity of Texas - Houston Medical SchoolUSA
  2. 2.Brain Research and Rehabilitation Center Neuron and Department of NeurologyUniversity of KuopioKuopioFinland
  3. 3.Mississippi Methodist Rehabilitation CenterJacksonUSA

Personalised recommendations