Pharmaceutical Research

, Volume 20, Issue 2, pp 319–323 | Cite as

Sorting of Rat SPNT in Renal Epithelium Is Independent of N-Glycosylation



Purpose. The sodium-dependent, purine-selective nucleoside transporter, SPNT, has a unique steady-state expression pattern in renal epithelial cells. In comparison with the concentrative nucleoside transporter, CNT1, which is confined to the apical membrane, SPNT is expressed predominantly on the apical membrane but with significant expression on the basolateral membrane as well. Alternate surface expression indicates that SPNT likely has different sorting and trafficking mechanisms from CNT1. Because glycosylation has been reported to be essential for apical targeting of other transporters, and SPNT contains three unique glycosylation sites, we examined the importance of glycosylation in sorting of SPNT. Preliminary studies suggested that glycosylation affects surface expression of SPNT but not CNT1.

Methods. All three unique glycosylation sites were mutated alone and in tandem. Wild-type and mutant SPNT, tagged with green fluorescence protein, were stably transfected into MDCK. Positive clones were assayed for polarized surface expression by immunofluorescence and functional analysis.

Results. Mutation at all three sites alone or in tandem resulted in functional proteins. Removal of sites N606 and N625 resulted in proteins of reduced molecular mass. None of the unglycosylated mutants localized differently than wild-type SPNT.

Conclusion. N-linked glycosylation is not essential for polarized sorting.

concentrative nucleoside transporter SPNT glycosylation sorting MDCK 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Che, D. F. Ortiz, and I. M. Arias. Primary structure and functional expression of a cDNA encoding the bile canalicular, purine-specific Na(+)-nucleoside cotransporter. J. Biol. Chem. 270:13596-13599 (1995).Google Scholar
  2. 2.
    Q. Q. Huang, S. Y. Yao, M. W. Ritzel, A. R. Paterson, C. E. Cass, and J. D. Young. Cloning and functional expression of a complementary DNA encoding a mammalian nucleoside transport protein. J. Biol. Chem. 269:17757-17760 (1994).Google Scholar
  3. 3.
    M. W. Ritzel, A. M. Ng, S. Y. Yao, K. Graham, S. K. Loewen, K. M. Smith, R. G. Ritzel, D. A. Mowles, P. Carpenter, X. Z. Chen, E. Karpinski, R. J. Hyde, S. A. Baldwin, C. E. Cass, and J. D. Young. Molecular identification and characterization of novel human and mouse concentrative Na+-nucleoside cotransporter proteins (hCNT3 and mCNT3) broadly selective for purine and pyrimidine nucleosides (system cib). J. Biol. Chem. 276:2914-2927 (2000).Google Scholar
  4. 4.
    M. Pennycooke, N. Chaudary, I. Shuralyova, Y. Zhang, and I. R. Coe. Differential expression of human nucleoside transporters in normal and tumor tissue. Biochem. Biophys. Res. Commun. 280:951-959 (2001).Google Scholar
  5. 5.
    L. M. Mangravite, J. H. Lipshutz, K. E. Mostov, and K. M. Giacomini. Localization of GFP-tagged concentrative nucleoside transporters in a renal polarized epithelial cell line. Am. J. Physiol. Renal Physiol. 280:F879-F885 (2001).Google Scholar
  6. 6.
    R. Martinez-Maza, I. Poyatos, B. Lopez-Corcuera, N. u. E, C. Gimenez, F. Zafra, and C. Aragon. The role of N-glycosylation in transport to the plasma membrane and sorting of the neuronal glycine transporter GLYT2. J. Biol. Chem. 276:2168-2173 (2001).Google Scholar
  7. 7.
    K. Petrecca, R. Atanasiu, A. Akhavan, and A. Shrier. N-linked glycosylation sites determine HERG channel surface membrane expression. J. Physiol. 515:41-48 (1999).Google Scholar
  8. 8.
    S. R. Hamilton, S. Y. Yao, J. C. Ingram, D. A. Hadden, M. W. Ritzel, M. P. Gallagher, P. J. Henderson, C. E. Cass, J. D. Young, and S. A. Baldwin. Subcellular distribution and membrane topology of the mammalian concentrative Na+-nucleoside cotransporter rCNT1. J. Biol. Chem. 276:27981-27988 (2001).Google Scholar
  9. 9.
    A. Felipe, R. Valdes, B. Santo, J. Lloberas, J. Casado, and M. Pastor-Anglada. Na+-dependent nucleoside transport in liver: two different isoforms from the same gene family are expressed in liver cells. Biochem. J. 330:997-1001 (1998).Google Scholar
  10. 10.
    C. Saunders, J. R. Keefer, A. P. Kennedy, J. N. Wells, and L. E. Limbird. Receptors coupled to pertussis toxin-sensitive G-proteins traffic to opposite surfaces in Madin-Darby canine kidney cells. A1 adenosine receptors achieve apical and alpha 2A adrenergic receptors achieve basolateral localization. J. Biol. Chem. 271:995-1002 (1996).Google Scholar
  11. 11.
    M. Pastor-Anglada, A. Felipe, F. J. Casado, B. del Santo, J. F. Mata, and R. Valdes. Nucleoside transporters and liver cell growth. Biochem. Cell. Biol. 76:771-777 (1998).Google Scholar
  12. 12.
    M. Pastor-Anglada, F. J. Casado, R. Valdes, J. Mata, J. Garcia-Manteiga, M. Molina, A. Felipe, B. del Santo, J. F. Mata, B. Santo, J. Lloberas, and J. Casado. Complex regulation of nucleoside transporter expression in epithelial and immune system cells. Mol. Membr. Biol. 18:81-85 (2001).Google Scholar
  13. 13.
    S. Lin, H. Y. Naim, A. C. Rodriguez, and M. G. Roth. Mutations in the middle of the transmembrane domain reverse the polarity of transport of the influenza virus hemagglutinin in MDCK epithelial cells. J. Cell. Biol. 142:51-57 (1998).Google Scholar
  14. 14.
    L. Olivares, C. Aragon, C. Gimenez, and F. Zafra. The role of N-glycosylation in the targeting and activity of the GLYT1 glycine transporter. J. Biol. Chem. 270:9437-9442 (1995).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  1. 1.Department of Biopharmaceutical SciencesUniversity of CaliforniaSan Francisco, San Francisco

Personalised recommendations