Journal of Scheduling

, Volume 6, Issue 1, pp 87–108 | Cite as

Part Batching and Scheduling in a Flexible Cell to Minimize Setup Costs

  • Alessandro Agnetis
  • Arianna Alfieri
  • Gaia Nicosia


In this paper we consider the problem of batching parts and scheduling their operations in flexible manufacturing cells. We consider the case in which there is only one processor and no more than k parts may be present in the system at the same time. The objective is to minimize the total number of setups, given that each part requires a sequence of operations, and each operation requires a given tool. We prove that even for k=3 the problem is NP-hard and we develop a branch-and-price scheme for its solution. Moreover, we present an extensive computational experience. Finally, we analyze some special cases and related problems.

NP-hardness column generation batching setup tool switch flexible manufacturing cell 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agnetis, A., M. Lucertini, and F. Nicolò, “Flow management in flexible manufacturing cells with pipeline operations,” Manag. Sci., 39, 294-306 (1993).Google Scholar
  2. Barnhart, C., E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and P. H. Vance, “Branch-and-price: column generation for solving huge integer programs,” Oper. Res., 46, 316-329 (1998).Google Scholar
  3. Blazewicz, J., K. H. Ecker, E. Pesch, G. Schmidt, and J. Weglarz, Scheduling Computer and Manufacturing Processes. Springer, Berlin, 1996, pp. 114-116.Google Scholar
  4. Brucker, P., A. Gladky, H. Hoogeveen, M.Y. Kovalyov, C. N. Potts, T. Tautenhahn and S.L. van de Velde, “Scheduling a batching machine,” J. Sched., 1, 31-54 (1998).Google Scholar
  5. Chein, M. and P. Martin, “Sur le nombre de sauts d'une foret,” C. R. Acad. Sci. Paris 275, serie A, 158-161 (1972).Google Scholar
  6. Co, H.C., J. S. Biermann, and S. K. Chen, “A methodical approach to the flexible manufacturing system batching, loading and tool configuration problems,” Int. J. Prod. Res., 28, 2171-2186 (1990).Google Scholar
  7. Desrochers, M. and F. Soumis, “A column generation approach to the urban transit crew scheduling problem,” Transport. Sci., 23, 1-13 (1989).Google Scholar
  8. Garey, M. R. and D. S. Johnson, Computers and Intractability Freeman, 1979Google Scholar
  9. Liu, Z. and W. Yu, “Scheduling one batch processor subject to job release dates,” Discrete Appl. Math., 105, 129-136 (2000).Google Scholar
  10. Maier, D., “The complexity of some problems on subsequences and supersequences,” J. ACM, 25, 322-336 (1978).Google Scholar
  11. Nemhauser, G. and L. Wolsey, Integer and Combinatorial Optimization Wiley Intescience, 1988.Google Scholar
  12. Pulleyblank, W. R., “On minimizing setups in precedence constrained scheduling,” Report 81105-OR. University of Bonn, 1975.Google Scholar
  13. Räihä, K. and E. Ukkonen, “The shortest common Supersequence problem over binary alphabet is NP-complete,” Theoretical Comput. Sci., 16, 187-198 (1981).Google Scholar
  14. Ryan, B. M. and B. A. Foster, “An integer Programming Approach to Scheduling,” in A. Wren (ed.), Computer Scheduling of Public Transport Urban Passenger Vehicle and Crew Scheduling, Amsterdam, North Holland, 1981, pp. 269-280.Google Scholar
  15. Samaddar, S., G. Rabinowitz, and A. Mehrez, “Resource sharing and scheduling for cyclic production in a computer-integrated manufacturing cell,” Comput. Indust. Eng., 36, 525-547 (1999).Google Scholar
  16. Stecke, K. E. and I. Kim, “Study of FMS part type selection approaches for short term production planning,” Int. J. Flexible Manufact. Syst., 1, 7-29 (1988).Google Scholar
  17. Tang, C. S. and E. V. Denardo, “Models arising from a flexible manufacturing machine, part I: minimization of the number of tool switches,” Oper. Res., 36, 767-777 (1988a).Google Scholar
  18. Tang, C. S. and E. V. Denardo, “Models arising from a flexible manufacturing machine, part II: minimization of the number of switching instants,” Oper. Res., 36, 778-784 (1988b).Google Scholar
  19. Timkovsky, V. G., “Complexity of common subsequence and supersequence problems and related problems,” Cybernetics, 25, 565-580 (1990).Google Scholar
  20. van den Akker, M., H. Hoogeveen, and S. van de Velde, “Combining column generation and lagragian relaxation. An application to a single-machine common due date scheduling problem”, Report No. 36-1998. Erasmus University Rotterdam, Rotterdam School of Management, Erasm Managment Series, 1998.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Alessandro Agnetis
    • 1
  • Arianna Alfieri
    • 1
  • Gaia Nicosia
    • 2
  1. 1.Dipartimento di Sistemi di Produzione e Economia dell'AziendaPolitecnico di Torino, Corso Duca degli Abruzzi 24TurinItaly
  2. 2.Dipartimento di Informatica e AutomazioneUniversità “Roma Tre,” via della Vasca Navale 79RomaItaly

Personalised recommendations