Brain Topography

, Volume 10, Issue 1, pp 3–8

Dipole Localization and Test-Retest Reliability of Frequency and Duration Mismatch Negativity Generator Processes

  • Thomas Frodl-Bauch
  • Norbert Kathmann
  • Hans-Jürgen Möller
  • Ulrich Hegerl
Article

Abstract

The mismatch negativity (MMN) is an event related potential component elicited by changes in duration, frequency or intensity of the stimuli during repetitive series of equal standard stimuli. In the present study we compared duration and frequency MMN using dipole source analysis concerning both the test-retest reliability of MMN-amplitudes and the locations of the potential sources. Furthermore, the influence of attention for test-retest-reliability was studied. Therefore, two groups of healthy subjects were investigated with different attentional manipulations. Twenty-one healthy subjects had to perform a visual attention task during the recording and 21 healthy subjects had no additional task to perform. All subjects were studied twice with a time interval of 3 weeks. Test-retest reliability was sufficiently high for the frequency but slightly lower for the duration MMN. The locations of the frequency and duration MMN-dipoles were in the auditory cortex with a more anterior and caudal location for the frequency MMN-dipoles. The latter finding supports the hypothesis that the frequency and duration MMNs have separate neuronal generators.

Event-related potentials Test-retest-reliability Source localization Neural representation Auditory cortex 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alho, K. Selective attention in auditory processing as revealed by enent-related brain potentials. Psychophysiology, 1992, 29: 247–263.Google Scholar
  2. Alho, k., Huotilainen, M. and Näätänen, R. Are memory traces for simple and comlex sounds located in diffeent regions of auditory cortex ? Recent MEG studies. Electroenceph. clin. Neurophysiol., 1995, 44:Suppl., 197–203.Google Scholar
  3. Asnuma, A., Wong, D. and Suga, N. Frequency and amplitude representations in anterior primary auditory cortex of the mustached bat. J. Neurophysiol., 1983, 50: 1182–1196.Google Scholar
  4. Catts, S.V., Shelley, A.M., Ward, P.B., Liebert, B., McConaghy, N., Andrews, S., Michie, P.T. Brain potential evidence for an auditory sensory memory deficit in schizophrenia. Am J Psychiatry, 1995, 152: 213–219.Google Scholar
  5. Csépe, V., karmos, G. and Molnar, M. Evoked potential correlates of stimulus deviance wakefulness and sleep in cat: Animal model of mismatch negativity. Electroenceph. Clin. Neurophysiol., 1987, 66: 571–578.Google Scholar
  6. Csépe, V., Pantev, C, Hoke, M., Hampson, S. and Ross, B. Evoked magnetc responses to minor pitch changes: localization of the mismatch field. Electroenceph. Clin. Neurophysiol., 1992, 84: 538–548.Google Scholar
  7. Fisher, R.A. Statistical methods for research workers. New York, Hafner, 1958.Google Scholar
  8. Giard, M. H., Perrin, P. and Pernier, J. Brain generators implicated in processing of auditory stimulus deviance: a topographic ERP study. Psychophysiology, 1990, 27: 627–640.Google Scholar
  9. Giard, M. H., Perrin, F. and Pernier, J. Scalp topographies dissociate attentional ERP components during the auditory information processing. Acta Oto-Laryngol., 1991, 491Suppl.: 168–175.Google Scholar
  10. Giard, M. H., Lavikainen, J., Reinikainen, K., Perrin, E., Bertrand, O., Pernier, J., Näätänen, R. Separate Representation of Stimulus Frequency, Intensity, and Duration in auditory sensory memory: an event-related potential and dipole-model analysis. J. Cognitive Neurosc., 1995, 7: 133–143.Google Scholar
  11. Hari, R., Hämäläinen, M., Ilmoniemi, R., Kaukoranta, E., Reinikainen, K., Salminen, J., Alho, K., Näätänen, R. and Sams, M. Responses of the primary auditory cortex to pitch changes in a sequence of tone pips: Neuromagnetic recordings in man. Neurosci. Lett., 1984, 50: 127–132.Google Scholar
  12. Hegerl, U., Galinat, J., Mrowinski, D. Intensity dependence of auditory evoked dipole source activity. Int. J. Psychophysiol., 1994, 17: 1–13.Google Scholar
  13. Hegerl, U. and Frodl-Bauch, T. Dipole source analysis of the auditory evoked P300: a methodological advance. Psych. Res. Neuroim., 1977, 74: in press.Google Scholar
  14. Javitt, D.C., Schroeder, C. E., Arezzo, J. C. and Vaughan Jr., H. C. Selective inhibition of processing-contingent auditory event-related potentials by phencyclidine (PCP)-like agent MK-801. Electroenceph. Clin. Neurphysiol., 1991, 75: 65P.Google Scholar
  15. Javitt, D. C., Schroeder, C. E., Steinschneider; M, Arezzo, J. C., Ritter, W. and Vaughan Jr, H.G. Cognitive enent-related potentials in human and non-human proimates: implications for the PCP/NMDAo model of schizophrenia. Electroenceph. Clin. Neurophysiol., 1995, 44Suppl.: 161–175.Google Scholar
  16. Kathmann, N., Wagner, M., Rendtorff, N., Engel, R. R. Delayed peak latency of the mismatch negativity in schizophrenics and alcoholics. Biol. Psychiat., 1995, 37: 754–757.Google Scholar
  17. Merzenich, M. M. and Brugge, J. F. Representation of the cochlear partition on the superior temporal plane of the macaque monkey. Brain Res., 1973, 50: 275–296.Google Scholar
  18. Näätänen, R., Gaillard, A.W.K. and Mantysalo, S. Early selective-attention effect on evoked potential reinterpreted. Acta SPsychol., 1978, 42: 313–329.Google Scholar
  19. Näätänen, R., Gaillard, A.W.K., and Mantysalo, S. Brain potential correlates of voluntary and involuntary attention. In: H.H. Kornhuber and L. Deecke (Eds.), Motor and Sensory Processes of the Brain: Electrical Potentials, Behavior and Clinical Use, 54. Elsevier, Amsterdam, 1980: 343–348.Google Scholar
  20. Näätänen, R. Mismatch negativity outside strong attentional focus: a commentary on Woldorff et al. (1991). Psychophysiology, 1991, 28: 30–42.Google Scholar
  21. Näätänen, R. Attention and brain function. tiHillsdale, NJ: Erlbaum, 1992.Google Scholar
  22. Näätänen, R., Paavilainen, P., Tiitinen, D., Jiang, D and Alho, K. Attention and mismatch negativity. Psychophysiology, 1933, 30: 436–450.Google Scholar
  23. Phillips, D.P. and Orman, S.S. Responses of single neurons in posterior field of cat auditory cortex to tonal stimulation. J.Neurophysiol., 1084, 51: 147–163.Google Scholar
  24. Phillips, D. P. Orman, S. S., Musicant, A. D. and Wilson, G.F. Neurons in the cat's pimary auditory cortex distinguished by their responses to tones and wide-spectrum noise. Hearing Res., 1985, 18: 73–86.Google Scholar
  25. Sams, M., Alho, K. and Näätänen, R. Short-trem habituation and dishabituation of the mismatch negativity of the ERP. Psychophysiology, 1984, 21: 434–441.Google Scholar
  26. Sams, M., Paavilainen, P., Alho, K., and Näätänen, R. Auditory frequency discrimination and event-related potentials. Electroenceph. Clin. Neurophysiol., 1985, 62: 437–448.Google Scholar
  27. Sams, M. Cortical responses to changes in auditory stimuli. Acta Oto-Laryngol., 1991, 491Suppl.: 124–130.Google Scholar
  28. Shelley, A. M., Word, P. B., Catts, S. V., Michie, P. T., Andrews, S. and McConaghy, N. Mismatch negativity: an index of a preattentive processing deficity in schizophrenia. Biol. Psychiat., 1991, 30: 1059–1062.Google Scholar
  29. Scherg, M. and von Cramon, D. Two bilateral sources of the late AEP as identified by spatio-temporal dipole model. Electroenceph. Clin. Neurphysiol., 1985, 62: 32–44.Google Scholar
  30. Scherg, M. and von Cramon, D. Evoked dipole source potentials of the human auditory corex. Electroenceph. Clin. Neurophysiol., 1986, 65: 344–360.Google Scholar
  31. Scherg, M., Vajsar, J. and Picton, T. W. A source analysis of the human auditory evoked potentials. J. Cogn. Neurosci., 1989, 1: 336–355.Google Scholar
  32. Scherg, M., and von Cramon, D. Dipole source potentials of the auditory cortex in normal subjects and in patients with temporal lobe lesions. Adv. Audiol., 1990, 6: 165–193.Google Scholar
  33. Scherg, M., and Picton, T. W. Separation and identification of event-related potential components by brain electrical source analysis. Electroenceph. Clin. Neurophysiol., 1991, 42Suppl.: 24–37.Google Scholar
  34. Schreiner, C. E., Mendelson, J. R. and Sutter, M. L. Functional topography of cat primary auditory cortex: Representation of tone intensity. Exp. Brain Res., 92: 105–122.Google Scholar
  35. Tiitinen, H., Alho, K., Huotiainen, M., Ilmoniemi, R. J., Simola, J. and Näätänen, R. Tonotopic auditory cortex and Magnetencephalographic (MEG) equievalent of the mismatch negativity. Psychophysiology, 1993, 30: 537–540.Google Scholar
  36. Winer, B.J. Statistical principles in experimental design. New York, McGraw-Hill, 1962.Google Scholar
  37. Woleorff, M.G., Hackley, S.A., Hillyard, S.A. The effects of channel-selective attention on the mismatch negativity wave elicited by deviant tones. Psychophysiology, 1991, 28: 30–42.Google Scholar

Copyright information

© Human Sciences Press, Inc. 1997

Authors and Affiliations

  • Thomas Frodl-Bauch
    • 1
  • Norbert Kathmann
    • 1
  • Hans-Jürgen Möller
    • 1
  • Ulrich Hegerl
    • 1
  1. 1.Department of Psychiatry, Clinical NeurophysiologyUniversity of Munich, Ludwigs - Maximilians - UniversityMünchenGermany

Personalised recommendations