Journal of Biomolecular NMR

, Volume 25, Issue 2, pp 105–112 | Cite as

Deuterium isotope effects and fractionation factors of hydrogen-bonded A:T base pairs of DNA

  • Ioannis Vakonakis
  • Miguel Salazar
  • Mijeong Kang
  • Kim R. Dunbar
  • Andy C. LiWangEmail author


Deuterium isotope effects and fractionation factors of N1...H3–N3 hydrogen bonded Watson–Crick A:T base pairs of two DNA dodecamers are presented here. Specifically, two-bond deuterium isotope effects on the chemical shifts of 13C2 and 13C4, 2Δ13C2 and 2Δ13C4, and equilibrium deuterium/protium fractionation factors of H3, Φ, were measured and seen to correlate with the chemical shift of the corresponding imino proton, δH3. Downfield-shifted imino protons associated with larger values of 2Δ13C2 and 2Δ13C4 and smaller Φ values, which together suggested that the effective H3–N3 vibrational potentials were more anharmonic in the stronger hydrogen bonds of these DNA molecules. We anticipate that 2Δ13C2, 2Δ13C4 and Φ values can be useful gauges of hydrogen bond strength of A:T base pairs.

chemical shift DNA deuterium isotope effect fractionation factors hydrogen bond imino Watson–Crick 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abildgaard, J., Bolvig, S. and Hansen, P.E. (1998) J. Am. Chem. Soc., 120, 9063-9069.Google Scholar
  2. Barfield, M., Dingley, A.J., Feigon, J. and Grzesiek, S. (2001) J. Am. Chem. Soc., 123, 4014-4022.Google Scholar
  3. Batey, R.T., Battiste, J.L. and Williamson, J.R. (1995) Meth. Enzymol., 261, 300-322.Google Scholar
  4. Bax, A., Farley, K.A. and Walker, G.S. (1996) J. Magn. Reson. Ser. A, 119, 134-138.Google Scholar
  5. Becker, E.D. (1996) In Encyclopedia of Nuclear Magnetic Resonance, Grant, D.M. and Harris, R.K. (Eds.), Wiley, Chichester, pp. 2409-2415.Google Scholar
  6. Bowers, P.M. and Klevit, R.E. (1996) Nat. Struct. Biol., 3, 522-531.Google Scholar
  7. Case, D.A. (1995) J. Biomol. NMR, 6, 341-346.Google Scholar
  8. Cheng, J.-W., Chou, S.-H., Salazar, M. and Reid, B.R. (1992) J. Mol. Biol., 228, 118-137.Google Scholar
  9. Cleland, W.W. (1980) Meth. Enzymol., 64, 104-125.Google Scholar
  10. Dejong, E.S., Marzluff, W.F. and Nikonowicz, E.P. (2002) RNA, 8, 83-96.Google Scholar
  11. Dellwo, M.J. and Wand, A.J. (1993) J. Am. Chem. Soc., 115, 1886-1893.Google Scholar
  12. Dingley, A.J. and Grzesiek, S. (1998) J. Am. Chem. Soc., 120, 8293-8297.Google Scholar
  13. Dingley, A.J., Masse, J.E., Peterson, R.D., Barfield, M., Feigon, J. and Grzesiek, S. (1999) J. Am. Chem. Soc., 121, 6019-6027.Google Scholar
  14. Dziembowska, T., Rozwadowski, Z. and Hansen, P.E. (1997) J. Mol. Struct., 436-437, 189-199.Google Scholar
  15. Eimer, W., Williamson, J.R., Boxer, S.G. and Pecora, R. (1990) Biochemistry, 29, 799-811.Google Scholar
  16. Escaja, N., Pedroso, E., Rico, M. and González, C. (2000) J. Am. Chem. Soc., 122, 12732-12742.Google Scholar
  17. Garrett, D.S., Powers, R., Gronenborn, A.M. and Clore, G.M. (1991) J. Magn. Reson., 95, 214-220.Google Scholar
  18. Giessner-Prettre, C. and Pullman, B. (1987) Quart. Rev. Biophys., 20, 113-172.Google Scholar
  19. Gmeiner, W.H. and Poulter, C.D. (1988) J. Am. Chem. Soc., 110, 7640-7647.Google Scholar
  20. Gregory, D.M., Mehta, M.A., Shiels, J.C. and Drobny, G.P. (1997) J. Chem. Phys., 107, 28-42.Google Scholar
  21. Hare, D.R., Wemmer, D.E., Chou, S.-H., Drobny, G. and Reid, B.R. (1983) J. Mol. Biol., 171, 319-336.Google Scholar
  22. Harris, T.K. and Mildvan, A.S. (1999) Proteins, 35, 275-282.Google Scholar
  23. Jarret, R.M. and Saunders, M. (1985) J. Am. Chem. Soc., 107, 2648-2654.Google Scholar
  24. Jeffrey, G.A. and Saenger, W. (1991) Hydrogen Bonding in Biological Structures, Springer-Verlag, New York.Google Scholar
  25. Khare, D., Alexander, P. and Orban, J. (1999) Biochemistry, 38, 3918-3925.Google Scholar
  26. Kojima, C., Ono, A., Kainosho, M. and James, T.L. (1998) J. Magn. Reson., 135, 310-333.Google Scholar
  27. Kreevoy, M.M. (1976) In Isotopes in Organic Chemistry, Vol. 2, Buncel, E. and Lee, C.C. (Eds.), Elsevier, New York, pp. 1-31.Google Scholar
  28. Leijon, M. and Gräslund, A. (1992) Nucl. Acids Res., 20, 5339-5343.Google Scholar
  29. LiWang, A.C. and Bax, A. (1996) J. Am. Chem. Soc., 118, 12864-12865.Google Scholar
  30. Loh, S.N. and Markley, J.L. (1994) Biochemistry, 33, 1029-1036.Google Scholar
  31. Markley, J.L., Bax, A., Arata, Y., Hilbers, C.W., Kaptein, R., Sykes, B.D., Wright, P.E. and Wüthrich, K. (1998) Pure Appl. Chem., 70, 117-142.Google Scholar
  32. Nuutero, S., Fujimoto, B.S., Flynn, P.F., Reid, B.R., Ribeiro, N.S. and Schurr, J.M. (1994) Biopolymers, 34, 463-480.Google Scholar
  33. Patel, D.J., Ikuta, S., Kozlowski, S. and Itakura, K. (1983) Proc. Natl. Acad. Sci. USA, 80, 2184-2188.Google Scholar
  34. Pervushin, K., Ono, A., Fernández, C., Szyperski, T., Kainosho, M. and Wüthrich, K. (1998) Proc. Natl. Acad. Sci. USA, 95, 14147-14151.Google Scholar
  35. Piotto, M.V.S. and Sklenar, V. (1992) J. Biomol. NMR, 2, 661-665.Google Scholar
  36. Reuben, J. (1986a) J. Am. Chem. Soc., 108, 1082-1083.Google Scholar
  37. Reuben, J. (1986b) J. Am. Chem. Soc., 108, 1735-1738.Google Scholar
  38. Reuben, J. (1987) J. Am. Chem. Soc., 109, 316-321.Google Scholar
  39. Ruud, K., Åstrand, P.-O. and Taylor, P.R. (2001) J. Am. Chem. Soc., 123, 4826-4833.Google Scholar
  40. Saenger, W. (1984) Principles of Nucleic Acid Structure, Springer-Verlag, New York.Google Scholar
  41. Schowen, K.B. and Schowen, R.L. (1982) Meth. Enzymol., 87, 551-606.Google Scholar
  42. Shi, Z., Krantz, B.A., Kallenbach, N. and Sosnick, T.R. (2002) Biochemistry, 41, 2120-2129.Google Scholar
  43. Shui, X., McFail-Isom, L., Hu, G.G. and Williams, L.D. (1998) Biochemistry, 37, 8341-8355.Google Scholar
  44. Smith, D.E., Su, J.-Y. and Jucker, F.M. (1997) J. Biomol. NMR, 10, 245-253.Google Scholar
  45. Tirado, M.M. and de la Torre, J.G. (1980) J. Chem. Phys., 73, 1986-1993.Google Scholar
  46. Wagner, G., Pardi, A. and Wüthrich, K. (1983) J. Am. Chem. Soc., 105, 5948-5949.Google Scholar
  47. Wang, A.C. and Bax, A. (1996) J. Am. Chem. Soc., 118, 2483-2494.Google Scholar
  48. Wang, C., Gao, X. and Jones, R.A. (1991) J. Am. Chem. Soc., 113, 1448-1450.Google Scholar
  49. Weast, R.C. (Ed.) (1988) CRC Handbook of Chemistry and Physics 1st Student Edition,CRC Press, Inc., Boca Raton.Google Scholar
  50. Wilkens, S.J., Westler, W.M., Weinhold, F. and Markley, J.L. (2002) J. Am. Chem. Soc., 124, 1190-1191.Google Scholar
  51. Wüthrich, K. (1986) NMR of Proteins and Nucleic Acids,Wiley, New York.Google Scholar
  52. Yanagi, K., Privé, G.G. and Dickerson, R.E. (1991) J. Mol. Biol., 217, 201-214.Google Scholar
  53. Yoon, C., Privé, G.G., Goodsell, D.S. and Dickerson, R.E. (1988) Proc. Natl. Acad. Sci. USA, 85, 6332-6336.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Ioannis Vakonakis
    • 1
  • Miguel Salazar
    • 2
  • Mijeong Kang
    • 1
  • Kim R. Dunbar
    • 1
  • Andy C. LiWang
    • 1
    Email author
  1. 1.Departments of Biochemistry & BiophysicsTexas A&M UniversityCollege StationU.S.A
  2. 2.University of Texas, College of PharmacyAustinU.S.A

Personalised recommendations