Journal of Statistical Physics

, Volume 110, Issue 3–6, pp 591–609 | Cite as

Crossover Critical Behavior in the Three-Dimensional Ising Model

  • Young C. Kim
  • Mikhail A. Anisimov
  • Jan V. Sengers
  • Erik Luijten


The character of critical behavior in physical systems depends on the range of interactions. In the limit of infinite range of the interactions, systems will exhibit mean-field critical behavior, i.e., critical behavior not affected by fluctuations of the order parameter. If the interaction range is finite, the critical behavior asymptotically close to the critical point is determined by fluctuations and the actual critical behavior depends on the particular universality class. A variety of systems, including fluids and anisotropic ferromagnets, belongs to the three-dimensional Ising universality class. Recent numerical studies of Ising models with different interaction ranges have revealed a spectacular crossover between the asymptotic fluctuation-induced critical behavior and mean-field-type critical behavior. In this work, we compare these numerical results with a crossover Landau model based on renormalization-group matching. For this purpose we consider an application of the crossover Landau model to the three-dimensional Ising model without fitting to any adjustable parameters. The crossover behavior of the critical susceptibility and of the order parameter is analyzed over a broad range (ten orders) of the scaled distance to the critical temperature. The dependence of the coupling constant on the interaction range, governing the crossover critical behavior, is discussed.

Critical phenomena crossover Landau model Ising model order parameter susceptibility 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. E. Fisher, Scaling, universality, and renormalization group theory, in Lecture Notes in Physics, Vol. 186, F. J. W. Hahne, ed. (Springer, Berlin, 1982), pp. 1–139.Google Scholar
  2. 2.
    M. S. Green and J. V. Sengers, eds., Critical Phenomena: Proceedings of a Conference Held in Washington, D.C., April 1965, National Bureau of Standards Miscellaneous Publication 273 (U.S. Government Printing Office, Washington, DC, 1966).Google Scholar
  3. 3.
    M. E. Fisher, ref. 2, pp. 21–25.Google Scholar
  4. 4.
    M. E. Fisher, ref. 2, pp. 108–115.Google Scholar
  5. 5.
    P. Debye, ref. 2, p. 130.Google Scholar
  6. 6.
    M. E. Fisher, ref. 2, p. 132.Google Scholar
  7. 7.
    E. Luijten, H. W. J. Blöte, and K. Binder, Medium-range interactions and crossover to classical critical behavior, Phys. Rev. E. 54:4626–4636 (1996).Google Scholar
  8. 8.
    E. Luijten, H. W. J. Blöte, and K. Binder, Nonmonotonic crossover of the effective susceptibility exponent, Phys. Rev. Lett. 79:561–564 (1997).Google Scholar
  9. 9.
    E. Luijten, H. W. J. Blöte, and K. Binder, Crossover scaling in two dimensions, Phys. Rev. E 56:6540–6556 (1997).Google Scholar
  10. 10.
    E. Luijten and K. Binder, Nature of crossover from classical to Ising-like critical behavior, Phys. Rev. E 58:R4060-R4063 (1998)Google Scholar
  11. 11.
    E. Luijten and K. BinderPhys. Rev. E 59:7254(E)(1999).Google Scholar
  12. 12.
    E. Luijten, Critical properties of the three-dimensional equivalent-neighbor model and crossover scaling in finite systems, Phys. Rev. E 59:4997–5008 (1999).Google Scholar
  13. 13.
    K. Binder and E. Luijten, Monte Carlo tests of renormalization-group predictions for critical phenomena in Ising models, Phys. Rep. 344:179–253 (2001).Google Scholar
  14. 14.
    J. F. Nicoll, Critical phenomena of fluids: asymmetric Landau-Ginzburg-Wilson model, Phys. Rev. A 24:2203–2220 (1981).Google Scholar
  15. 15.
    J. F. Nicoll and J. K. Bhattacharjee, Crossover functions by renormalization-group matching: O(ε2) results, Phys. Rev. B 23:389–401 (1981).Google Scholar
  16. 16.
    J. F. Nicoll and P. C. Albright, Crossover functions by renormalization-group matching: three-loop results, Phys. Rev. B 31:4576–4589 (1985).Google Scholar
  17. 17.
    C. Bagnuls and C. Bervillier, Nonasymptotic critical behavior from field theory at d=3: The disordered-phase case, Phys. Rev. B 32:7209–7231 (1985).Google Scholar
  18. 18.
    C. Bagnuls, C. Bervillier, D. I. Meiron, and B. G. Nickel, Nonasymptotic critical behavior from field theory at d=3 II: The ordered-phase case, Phys. Rev. B 35:3585–3607 (1987).Google Scholar
  19. 19.
    P. C. Albright, J. V. Sengers, J. F. Nicoll, and M. Ley-Koo, A crossover description for the thermodynamic properties of fluids in the critical region, Int. J. Thermophys. 7:75–85 (1986).Google Scholar
  20. 20.
    P. C. Albright, Z. Y. Chen, and J. V. Sengers, Crossover from singular to regular thermodynamic behavior of fluids in the critical region, Phys. Rev. B 36:877–880 (1987).Google Scholar
  21. 21.
    Z. Y. Chen, P. C. Albright, and J. V. Sengers, Crossover from singular to regular classical thermodynamic behavior of fluids, Phys. Rev. A 41:3161–3177 (1990).Google Scholar
  22. 22.
    Z. Y. Chen, A. Abbaci, S. Tang, and J. V. Sengers, Global thermodynamic behavior of fluids in the critical region, Phys. Rev. A 42:4470–4484 (1990).Google Scholar
  23. 23.
    M. A. Anisimov, S. B. Kiselev, J. V. Sengers, and S. Tang, Crossover approach to global critical phenomena in fluids, Phys. A 188:487–525 (1992).Google Scholar
  24. 24.
    J. Luettmer-Strathmann, S. Tang, and J. V. Sengers, A parametric model for the global thermodynamic behavior of fluids in the critical region, J. Chem. Phys. 97:2705–2717 (1992).Google Scholar
  25. 25.
    M. Y. Belyakov and S. B. Kiselev, Crossover behavior of the susceptibility and the specific heat near a second-order phase transition, Phys. A 190:75–94 (1992).Google Scholar
  26. 26.
    M. Y. Belyakov, S. B. Kiselev, and A. R. Muratov, Thermodynamic properties over a wide vicinity of the critical point, JETP 77:279–285 (1993).Google Scholar
  27. 27.
    S. B. Kiselev and J. V. Sengers, An improved parametric crossover model for the thermodynamic properties of fluids in the critical region, Int. J. Thermophys. 14:1–32 (1993).Google Scholar
  28. 28.
    S. B. Kiselev, Prediction of the thermodynamic properties and the phase behavior of binary mixtures in the extended critical region, Fluid Phase Equilibria 128:1–28 (1997).Google Scholar
  29. 29.
    A. Pelissetto, P. Rossi, and E. Vicari, Mean-field expansion for spin models with medium-range interactions, Nuclear Phys. B 554[FS]:552–606 (1999).Google Scholar
  30. 30.
    I. Hahn, F. Zhong, M. Barmatz, R. Haussmann, and J. Rudnick, Crossover behavior of the isothermal susceptibility near the He3 critical point, Phys. Rev. E 63:055104(2001).Google Scholar
  31. 31.
    M. A. Anisimov and J. V. Sengers, Critical and crossover phenomena in fluids and fluid mixtures, in Supercritical Fluids-Fundamentals and Applications, E. Kiran, P. G. Debenedetti, and C. J. Peters, eds. (Kluwer, Dordrecht, 2000), pp. 89–121.Google Scholar
  32. 32.
    M. A. Anisimov and J. V. Sengers, Critical region, in Equations of State for Fluids and Fluid Mixtures, J. V. Sengers, R. F. Kayser, C. J. Peters, and H. J. White, Jr., eds. (Elsevier, Amsterdam, 2000), pp. 381–434.Google Scholar
  33. 33.
    S. Tang, J. V. Sengers, and Z. Y. Chen, Nonasymptotic critical thermodynamical behavior of fluids, Phys. A 179:344–377 (1991).Google Scholar
  34. 34.
    V. A. Agayan, M. A. Anisimov, and J. V. Sengers, Crossover parametric equation of state for Ising-like systems, Phys. Rev. E 64:026125(2001).Google Scholar
  35. 35.
    J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Oxford University Press, Oxford, 1996).Google Scholar
  36. 36.
    A. J. Liu and M. E. Fisher, The three-dimensional Ising model revisited numerically, Phys. A 156:35–76 (1989).Google Scholar
  37. 37.
    R. Guida and J. Zinn-Justin, Critical exponents of the N-vector model, J. Phys. A 31:8103–8121 (1998).Google Scholar
  38. 38.
    M. Campostrini, A. Pelissetto, P. Rossi, and E. Vicari, Improved high-temperature expansion and critical equation of state of three-dimensional Ising-like systems, Phys. Rev. E 60:3526–3563 (1999).Google Scholar
  39. 39.
    S.-Y. Zinn and M. E. Fisher, Universal surface-tension and critical-isotherm amplitude ratios in three dimensions, Phys. A 226:168–180 (1996).Google Scholar
  40. 40.
    V. A. Agayan, Crossover Critical Phenomena in Simple and Complex Fluids, Ph.D. thesis, (Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, 2000).Google Scholar
  41. 41.
    A. D. Bruce and D. J. Wallace, Crossover behavior and effective critical exponents in isotropic and anisotropic Heisenberg systems, J. Phys. A 9:1117–1132 (1976).Google Scholar
  42. 42.
    T. S. Chang, D. D. Vvedensky, and J. F. Nicoll, Differential renormalization-group generators for static and dynamic critical phenomena, Phys. Rep. 217:279–362 (1992).Google Scholar
  43. 43.
    M. A. Anisimov, E. Luijten, V. A. Agayan, J. V. Sengers, and K. Binder, Shape of crossover between mean-field and asymptotic critical behavior in a three-dimensional Ising lattice, Phys. Lett. A 264:63–67 (1999).Google Scholar
  44. 44.
    M. Plischke and B. Bergersen, Equilibrium Statistical Physics, 2nd Ed. (World Scientific, Singapore, 1997).Google Scholar
  45. 45.
    M. E. Fisher and R. J. Burford, Theory of critical-point scattering and correlations. I. The Ising model, Phys. Rev. 156:583–622 (1967).Google Scholar
  46. 46.
    J. S. Kouvel and M. E. Fisher, Detailed magnetic behavior of nickel near its Curie point, Phys. Rev. 136:A1626-A1632 (1964).Google Scholar
  47. 47.
    A. J. Liu and M. E. Fisher, On the correction to scaling in three-dimensional Ising models, J. Stat. Phys. 58:431–442 (1990).Google Scholar
  48. 48.
    M. A. Anisimov, A. A. Povodyrev, V. D. Kulikov, and J. V. Sengers, Nature of crossover between Ising-like and mean-field critical behavior in fluids and fluid mixtures, Phys. Rev. Lett. 75:3146–3149 (1995).Google Scholar
  49. 49.
    S. Caraccio, M. S. Causo, A. Pelissetto, P. Rossi, and E. Vicari, Crossover scaling from classical to non-classical critical behavior, Nucl. Phys. Proc. Suppl. 73:757–762 (1999).Google Scholar
  50. 50.
    M. E. Fisher, Long-range crossover and "nonuniversal" exponents in micellar solutions, Phys. Rev. Lett. 57:1911–1914 (1986).Google Scholar
  51. 51.
    Y. B. Melnichenko, M. A. Anisimov, A. A. Povodyrev, G. D. Wignall, J. V. Sengers, and W. A. Van Hook, Sharp crossover of the susceptibility near the critical demixing point, Phys. Rev. Lett. 79:5266–5269 (1997).Google Scholar
  52. 52.
    M. A. Anisimov, A. F. Kostko, and J. V. Sengers, Competition of mesoscales and crossover to tricriticality in polymer solutions, Phys. Rev. E 65:051805(2002).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Young C. Kim
    • 1
  • Mikhail A. Anisimov
    • 1
    • 2
  • Jan V. Sengers
    • 1
    • 2
  • Erik Luijten
    • 3
  1. 1.Institute for Physical Science and TechnologyUniversity of MarylandCollege Park
  2. 2.Department of Chemical EngineeringUniversity of MarylandCollege Park
  3. 3.Department of Materials Science and EngineeringUniversity of Illinois, Urbana, Illinois 61801USA

Personalised recommendations