Journal of Applied Phycology

, Volume 14, Issue 5, pp 385–390 | Cite as

A procedure for axenic isolation of the marine microalga Isochrysis galbana from heavily contaminated mass cultures

  • Ji-Young Cho
  • Jae-Suk Choi
  • In-Soo Kong
  • Soo-Il Park
  • Russell G. Kerr
  • Yong-Ki Hong
Article

Abstract

Isochrysis galbana, one of the most widely usedmarine microalgae in the rearing of finfish and shellfish larvae, is masscultured frequently in outdoor tanks. Under prolonged and repeated culture,severe contamination occurs. Axenic isolation of I.galbanafrom such cultures was best achieved by using a ternary procedure involvingpercoll-gradient centrifugation, treatment with antibiotics, and growth on agarmedium. Protozoa and other algae were removed most effectively by isolation ofI. galbana at the 30–40% density layer on apercoll-gradient. Removal of bacteria was accomplished using a mixture of 5antibiotics (250 μg mL−1 ampicillin, 50μg mL−1 gentamycin, 100 μgmL−1 kanamycin, 500 μgmL−1 neomycin, 50 μgmL−1 streptomycin). Axenic colonies were isolated fromasolid medium prepared from 1% purified agar. The ternary procedure isconsideredapplicable to the isolation of other axenic single-celled microalgae fromheavily contaminated cultures.

Antibiotics Axenic isolation Gelling agent Isochrysis galbana Microalgae Percoll 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown M.R. and Farmer C.L. 1994. Riboflavin content of six species of microalgae used in mariculture. J. appl. Phycol. 6: 61-65.Google Scholar
  2. Choi J.S., Cho J.Y., Jin L.G., Jin H.J. and Hong Y.K. 2002. Procedures for the axenic isolation of conchocelis and monospores from the red seaweed Porphyra yezoensis. J. appl. Phycol. 14: 115-121.Google Scholar
  3. Connell L. and Cattolico R.A. 1996. Fragile algae: Axenic culture of field-collected samples of Heterosigma carterae. Mar. Biol. 125: 421-426.Google Scholar
  4. Cottrell M.T. and Suttle C.A. 1993. Production of axenic cultures of Micromonas pusilla (Prasinophyceae) using antibiotics. J. Phycol. 29: 385-387.Google Scholar
  5. Devauchelle N., Dorange G. and Faure C. 1994. A technique for separation high-and low-quality embryos of the scallop, Pecten maximus L. Aquaculture 120: 341-346.Google Scholar
  6. Gerhardt P. 1981. Manual of Methods for General Bacteriology. American Society for Microbiology, Washington, DC, USA, 524pp.Google Scholar
  7. Guillard R.L. and Ryther J.H. 1962. Studies for marine planktonic diatoms. I. Cyclotella nana Hustedt and Detormnule conferracea (Cleve) Gram. Can. J. Microbiol. 8: 229-239.Google Scholar
  8. Hoshaw R.W. and Rosowski J.R. 1973. Methods for microscopic algae. In: Stein J.R. (ed.), Handbook of Phycological Methods. Cambridge U.P., Cambridge, pp. 54-67.Google Scholar
  9. Jeong J.H., Jin H.J., Sohn C.H., Suh K.H. and Hong Y.K. 2000. Algicidal activity of the seaweed Corallina pilulifera against red tide microalgae. J. appl. Phycol. 12: 37-43.Google Scholar
  10. Jin H.J., Seo G.M., Cho Y.C., Hwang E.K., Sohn C.H. and Hong Y.K. 1997. Gelling agents for tissue culture of the seaweed Hizikia fusiformis. J. appl. Phycol. 9: 489-493.Google Scholar
  11. Jung M.M., Hagiwara A. and Hirayama K. 1997. Interspecific interactions in the marine rotifer microcosm. Hydrobiologia 358: 121-126.Google Scholar
  12. Kiffe M., Nokihara K. and Matsunaga T. 1995. Purification of docosahexaenoic acid (DHA) produced by marine microalga Isochrysis galbana. J. Mar. Biotechnol. 2: 139-142.Google Scholar
  13. Kim J.S., Park Y.H., Yoon B.D. and Oh H.M. 1999. Establishment of axenic cultures of Anabaena flosaquae and Aphanothece nidulans (Cyanobacteria) by lysozyme treatment. J. Phycol. 35: 865-869.Google Scholar
  14. Kohlenbach H.W. and Wernicke W. 1978. Investigations on the inhibitory effect of agar and the function of active carbon in anther culture. Z. Pflanzenphysiol. 86: 463-472.Google Scholar
  15. Lessley B.A. and Garner D.L. 1983. Isolation of mobile spermatozoa by density centrifugation in percoll. Gamete Res. 7: 49-61.Google Scholar
  16. Lopez Alonso D., Molina Grima E., Sanchez Perez J.A., Garcia Sanchez J.L. and Garcia Camacho F. 1992. Isolation of clones of Isochrysis galbana rich in eicosapentaenoic acid. Aquaculture 102: 363-371.Google Scholar
  17. Lorian V. 1980. Antibiotics in Laboratory Medicine. Williams & Wilkins, Baltimore, 737 pp.Google Scholar
  18. Polne-Fuller M., Amano H., Fusimura T., Hong Y.K., Coury D.A., Sousa-Pinto I. et al. 1993. Enhanced development and differentiation of protoplasts and spores of green and red seaweeds by a Pterocladia agar from New Zealand. Hydrobiologia 260/ 261: 499-504.Google Scholar
  19. Roberts L.W., Stiff C.M. and Baba S. 1984. Effects of six different agars on tracheary element differentiation in explants of Lactuca. Plant Tissue Culture Letters 1: 22-24.Google Scholar
  20. Schurmann W. and Peter R. 1995. Separation of planarian neoblasts based on density gradient centrifugation. Hydrobiologia 305: 267.Google Scholar
  21. Takeuchi T., Toyota M., Satoh S. and Watanabe T. 1990. Requirement of juvenile red seabream Pagrus major for eicosapentaenoic and docosahexaenoic acids. Nippon Suisan Gakkaishi 56: 1263-1269.Google Scholar
  22. USB 1992. USB Molecular Biology Reagents/Protocols. United States Biochemical, Cleveland, 620 pp.Google Scholar
  23. Watanabe T., Arakawa T., Takeuchi T. and Satoh S. 1989. Comparison between eicosapentaenoic and docosahexaenoic acids in terms of essential fatty acid efficiency in juvenile striped jack Pseudocaranx dentex. Nippon Suisan Gakkaishi 55: 1898-1995.Google Scholar
  24. Wikfors G.H., Ferris G.E. and Smith B.C. 1992. The relationship between gross biochemical composition of cultured algal foods and growth of the hard clam, Mercenaria mercenaria (L.). Aquaculture 108: 135-154.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Ji-Young Cho
    • 1
  • Jae-Suk Choi
    • 1
  • In-Soo Kong
    • 1
  • Soo-Il Park
    • 2
  • Russell G. Kerr
    • 3
  • Yong-Ki Hong
    • 1
  1. 1.Department of BiotechnologyPukyong National UniversityNamkuKorea
  2. 2.Department of Aquatic Life MedicinePukyong National UniversityNamkuKorea
  3. 3.Department of Chemistry and Biochemistry, Center for Molecular Biology and BiotechnologyFlorida Atlantic UniversityBoca RatonUSA

Personalised recommendations