Heart Failure Reviews

, Volume 8, Issue 1, pp 29–34 | Cite as

Nitric Oxide and Cardiovascular Protection



Nitric oxide (NO) plays a critical role in ischemic heart disease and ischemia-reperfusion. There is an increasing body of evidence to support the role of NO in myocardial and vascular protection in disease. The finding that NO might act as a trigger of late ischemic preconditioning (IPC) might lead to the development of novel anti-ischemic therapy. The role of NO signaling in the cardioprotective effects of ACE inhibitors and angiotensin II type 1 receptor(AT1) receptor antagonists is an active area of study.

nitric oxide cardiovascular protection ischemic preconditioning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gross SS, Wolin MS. Nitric oxide: Pathophysiological mechanisms. Annu Rev Physiol 1995;57:737-769.Google Scholar
  2. 2.
    Kelly RA, Balligand JL, Smith TW. Nitric oxide and cardiac function. Circ Res 1996;79:363-380.Google Scholar
  3. 3.
    Jugdutt BI. Nitric oxide and cardioprotection during ischemia-reperfusion. Heart Failure Rev 2002;7(4):391-406.Google Scholar
  4. 4.
    Lalu MM, Wang W, Schulz R. Peroxynitrite in myocardial ischemia-reperfusion injury. Heart Failure Rev 2002;7(4):359-370.Google Scholar
  5. 5.
    Bolli R. The early and late phases of preconditioning against myocardial stunning and the essential role of oxyradicals in the late phase: An overview. Basic Res Cardiol 1996;91:57-63.Google Scholar
  6. 6.
    Bolli R. The late phase of preconditioning. Circ Res 2000;87:972-983.Google Scholar
  7. 7.
    Downey JM, Cohen MV, Ytrehus K, Liu Y. Cellular mechanisms in ischemic preconditioning: The role of adenosine and protein kinase C. Ann NY Acad Sci 1994;723:82-98.Google Scholar
  8. 8.
    Marber MS, Yellon DM. Myocardial adaptation, stress proteins, and the second window of protection. Ann N Y Acad Sci 1996;793:123-141.Google Scholar
  9. 9.
    Bolli R, Bhatti ZA, Tang XL, Qiu Y, Zhang Q, Guo Y, Jadoon AK. Evidence that late preconditioning against myocardial stunning in conscious rabbits is triggered by the generation of nitric oxide. Circ Res 1997;81:42-52.Google Scholar
  10. 10.
    Qiu Y, Rizvi A, Tang XL, Manchikalapudi S, Takano H, Jadoon AK, Wu WJ, Bolli R. Nitric oxide triggers late preconditioning against myocardial infarction in conscious rabbits. Am J Physiol 1997;273:H2931-H2936.Google Scholar
  11. 11.
    Bolli R, Dawn B, Tang XL, Qiu Y, Ping P, Xuan YT, Jones WK, Takano H, Guo Y, Zhang J. The nitric oxide hypothesis of late preconditioning. Basic Res Cardiol 1998;93:325-338.Google Scholar
  12. 12.
    Ping P, Zhang J, Qiu Y, Tang XL, Manchikalapudi S, Cao X, Bolli R. Ischemic preconditioning induces selective translocation of protein kinase C isoforms epsilon and eta in the heart of conscious rabbits without subcellular redistribution of total protein kinase C activity. Circ Res 1997;81:404-414.Google Scholar
  13. 13.
    Ping P, Zhang J, Zheng YT, Li RC, Dawn B, Tang XL, Takano H, Balafanova Z, Bolli R. Demonstration of selective protein kinase C-dependent activation of Src and Lck tyrosine kinases during ischemic preconditioning in conscious rabbits. Circ Res 1999;85:542-550.Google Scholar
  14. 14.
    Xuan YT, Tang XL, Banerjee S, Takano H, Li RC, Han H, Qiu Y, Li JJ, Bolli R. Nuclear factor-kappaB plays an essential role in the late phase of ischemic preconditioning in conscious rabbits. Circ Res 1999;84:1095-1109.Google Scholar
  15. 15.
    Bolli R, Manchikalapudi S, Tang XL, Takano H, Qiu Y, Guo Y, Zhang Q, Jadoon AK. The protective effect of late preconditioning against myocardial stunning in conscious rabbits is mediated by nitric oxide synthase. Evidence that nitric oxide acts both as a trigger and as a mediator of the late phase of ischemic preconditioning. Circ Res 1997;81:1094-1107.Google Scholar
  16. 16.
    Takano H, Manchikalapudi S, Tang XL, Qiu Y, Rizvi A, Jadoon AK, Zhang Q, Bolli R. Nitric oxide synthase is the mediator of late preconditioning against myocardial infarction in conscious rabbits. Circulation 1998;98:441-449.Google Scholar
  17. 17.
    Guo Y, Jones WK, Xuan YT, Tang XL, Bao W, Wu WJ, Han H, Laubach VE, Ping P, Yang Z, Qiu Y, Bolli R. The late phase of ischemic preconditioning is abrogated by targeted disruption of the inducible NO synthase gene. Proc Natl Acad Sci USA 1999;96:11507-11512.Google Scholar
  18. 18.
    Shinmura K, Tang XL, Wang Y, Xuan YT, Liu SQ, Takano H, Bhatnagar A, Bolli R. Cyclooxygenase-2 mediates the cardioprotective effects of the late phase of ischemic preconditioning in conscious rabbits. Proc Natl Acad Sci USA 2000;97:10197-10202.Google Scholar
  19. 19.
    Shinmura K, Liu S-Q, Tang XL et al. Aldose reductase is an obligatory mediator of the late phase of ischemic preconditioning. Circulation 2000;102(Suppl II):II-120. AbstractGoogle Scholar
  20. 20.
    Takano H, Tang XL, Qiu Y, Guo Y, French BA, Bolli R. Nitric oxide donors induce late preconditioning against myocardial stunning and infarction in conscious rabbits via an antioxidant-sensitive mechanism. Circ Res 1998;83:73-84.Google Scholar
  21. 21.
    Banerjee S, Tang XL, Qiu Y, Takano H, Manchikalapudi S, Dawn B, Shirk G, Bolli R. Nitroglycerin induces late preconditioning against myocardial stunning via a PKCdependent pathway. Am J Physiol 1999;277:H2488-H2494.Google Scholar
  22. 22.
    Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: A delay of lethal cell injury in ischemic myocardium. Circulation 1986;74:1124-1136.Google Scholar
  23. 23.
    Kuzuya T, Hoshida S, Yamashita N, Fuji H, Oe H, Hori M, Kamada T, Tada M. Delayed effects of sublethal ischemia on the acquisition of tolerance to ischemia. Circ Res 1993;72:1293-1299.Google Scholar
  24. 24.
    Sun JZ, Tang XL, Knowlton AA, Park SW, Qiu Y, Bolli R. Late preconditioning against myocardial stunning. An endogenous protective mechanism that confers resistance to postischemic dysfunction 24 h after brief ischemia in conscious pigs. J Clin Invest 1995;95:388-403.Google Scholar
  25. 25.
    Tang XL, Qiu Y, Park SW, Sun JZ, Kalya A, Bolli R. Time course of late preconditioning against myocardial stunning in conscious pigs. Circ Res 1996;79:424-434.Google Scholar
  26. 26.
    Teschner S, Qiu Y, Tang XL, et al. Late preconditioning against myocardial stunning in conscious rabbits: A dose-related or all-or-none phenomenon? Circulation 1996;94(Suppl I):I-423. AbstractGoogle Scholar
  27. 27.
    Qui Y, Maldonado C, Tang XL et al. Late preconditioning against myocardial stunning in conscious rabbits. Circulation 1995;92(Suppl I):I-715. AbstractGoogle Scholar
  28. 28.
    Tang XL, Qiu Y, Park SW, et al. The early and late phases of ischemic preconditioning: A comparative analysis of their effects on infarct size, myocardial stunning, and arrhythmias in conscious pigs undergoing a 40-minute coronary occlusion. Circ Res 1997;80:730-742.Google Scholar
  29. 29.
    Dawn B, Bolli R. Role of nitric oxide in myocardial preconditioning. In: Chiueh CC, Hong J-S, Leong SK (eds.). Nitric Oxide. Novel Actions, Deleterious Effects, and Clinical Potential. Annals New York Acad of Sci Vol. 962,2002:18-41.Google Scholar
  30. 30.
    Jugdutt BI, Khan MI, Jugdutt SJ, Blinston GE. Impact of left ventricular unloading after late reperfusion of canine anterior myocardial infarction on remodeling and function NO and Cardiovascular Protection 33 using isosorbide-5-mononitrate. Circulation 1995;92:926-934.Google Scholar
  31. 31.
    Hill M, Takano H, Tang XL, Kodani E, Shirk G, Bolli R. Nitroglycerin induces late preconditioning against myocardial infarction in conscious rabbits despite development of nitrate tolerance. Circulation 2001;104:694-699.Google Scholar
  32. 32.
    Jugdutt BI, Becker LC, Hutchins GM, Bulkley BH, Reid PR, Kallman CH. Effect of intravenous nitroglycerin on collateral blood flow and infarct size in the conscious dog. Circulation 1981;63:17-28.Google Scholar
  33. 33.
    Jugdutt BI, Sussex BA, Warnica JW, Rossall RE. Persistent reduction in left ventricular asynergy in patients with acute myocardial infarction with infusion of nitroglycerin. Circulation 1983;68:1264-1273.Google Scholar
  34. 34.
    Jugdutt BI, Warnica JW. Intravenous nitroglycerin therapy to limit myocardial infarct size, expansion and complications: Effect of timing, dosage and infarct location. Circulation 1988;78:906-919.Google Scholar
  35. 35.
    Jugdutt BI, Khan MI. Effect of prolonged nitrate therapy on left ventricular remodeling after canine acute myocardial infarction. Circulation 1994;89:2297-2307.Google Scholar
  36. 36.
    Jugdutt BI, Schwarz-Michorowski BL, Tymchak WJ, Burton JR. Prompt improvement of left ventricular function and topography with combined reperfusion and intravenous nitroglycerin in acute myocardial infarction. Cardiology 1997;88:170-179.Google Scholar
  37. 37.
    Jugdutt BI. Nitroglycerin. In: Bates E (ed). Thrombolysis and Adjunctive Therapy for Myocardial Infarction. N. York: Marcel Dekker, 1992:119-144.Google Scholar
  38. 38.
    Hearse DJ. Reperfusion of the ischemic myocardium. J Mol Cell Cardiol 1997;9:605-616.Google Scholar
  39. 39.
    Braunwald E, Kloner RA. The stunned myocardium: Prolonged, post-ischemic ventricular dysfunction. Circulation 1982;66:1146-1149.Google Scholar
  40. 40.
    Bolli R. Mechanisms of myocardial "stunning." Circulation 1990;82:723-738.Google Scholar
  41. 41.
    Kloner RA, Jennings RB. Consequences of brief ischemia: Stunning, preconditioning, and their clinical implications. Part 1. Circulation 2001;104:2981-2989.Google Scholar
  42. 42.
    Kloner RA, Jennings RB. Consequences of brief ischemia: Stunning, preconditioning, and their clinical implications. Part 2. Circulation 2001;104:3158-3167.Google Scholar
  43. 43.
    Reimer KA, Lowe JE, Rasmussen MM, Jennings RB. The wavefront phenomenon of ischemic cell death. 1. Myocardial infarct size vs duration of coronary occlusion in dogs. Circulation 1977;56:786-794.Google Scholar
  44. 44.
    Becker LC, Jeremy RW, Schaper J, Schaper W. Ultrastructural assessment of myocardial necrosis occurring during ischemia and 3-h reperfusion in the dog. Am J Physiol 1999;277:H243-H252.Google Scholar
  45. 45.
    Fliss H, Gattinger D. Apoptosis in ischemic and reperfused rat myocardium. Circ Res 1996;76:949-956.Google Scholar
  46. 46.
    Gottlieb RA, Gruol DL, Zhu JY, Engler RL. Preconditioning in rabbit cardiomyocytes: Role of pH, vacuolar proton ATPase, and apoptosis. J Clin Invest 1996;97:2391-2398.Google Scholar
  47. 47.
    Kim CB, Braunwald E. Potential benefits of late reperfusion of infarcted myocardium. The open artery hypothesis. Circulation 1993;88:2426-2436.Google Scholar
  48. 48.
    Topol EJ. Early myocardial reperfusion: An assessment of current strategies in acute myocardial infarction. Eur Heart J 1996;17 (Suppl E):42-48.Google Scholar
  49. 49.
    Lefer AM, Hayward R. The role of nitric oxide in ischemiareperfusion. In: Loscalzo J, Vita JA (eds.). Contemporary Cardiology, Vol 4: Nitric Oxide and the Cardiovascular System. Humana Press, 2000:357-380.Google Scholar
  50. 50.
    Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 1990;87:1620-1624.Google Scholar
  51. 51.
    Radi R, Beckman JS, Bush KM, Freeman BA. Peroxynitrite-induced membrane lipid peroxidation: The cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys 1991;288:481-487.Google Scholar
  52. 52.
    Wang P, Zweier JL. Measurement of nitric oxide and peroxynitrite generation in the postischemic heart. Evidence for peroxynitrite-mediated reperfusion injury. J Biol Chem 1996;271:29223-29230.Google Scholar
  53. 53.
    Yasmin W, Strynadka KD, Schulz R. Generation of peroxynitrite contributes to ischemia-reperfusion injury in isolated rat hearts. Cardiovasc Res 1997;33:422-432.Google Scholar
  54. 54.
    Weiland U, Haendeler J, Ihling C, Albus U, Scholz W, Ruetten H, Zeiher AM, Dimmeler S. Inhibition of endogenous nitric oxide synthase potentiates ischemia-reperfusioninduced myocardial apoptosis via a caspase-3 dependent pathway. Cardiovasc Res 2000;45:671-678.Google Scholar
  55. 55.
    Kelly RA, Balligand JL, Smith TW. Nitric oxide and cardiac function. Circ Res 1996;79:363-380.Google Scholar
  56. 56.
    Paulus WJ. The role of nitric oxide in the failing heart. Heart Fail Rev 2001;6:105-118.Google Scholar
  57. 57.
    Arstall MA, Sawyer DB, Fukazawa R, Kelly RA. Cytokinemediated apoptosis in cardiac myocytes: The role of inducible nitric oxide synthase induction and peroxynitrite generation. Circ Res 1999;85:829-840.Google Scholar
  58. 58.
    Thoenes M, Forstermann U, Tracey WR, Bleese NM, Nussler AK, Scholz H, Stein B. Expression of inducible nitric oxide synthase in failing and non-failing human heart. J Mol Cell Cardiol. 1996;28:165-169.Google Scholar
  59. 59.
    Hirono S, Islam MO, Nakazawa M, Yoshida Y, Kodama M, Shibata A, Izumi T, Imai S. Expression of inducible nitric oxide synthase in rat experimental autoimmune myocarditis with special reference to changes in cardiac hemodynamics. Circ Res 1997;80:11-20.Google Scholar
  60. 60.
    Lewis NP, Tsao PS, Rickenbacher PR, Xue C, Johns RA, Haywood GA, von der Leyen H, Trindade PT, Cooke JP, Hunt SA, Billingham ME, Valantine HA, Fowler MB. Induction of nitric oxide synthase in the human cardiac allograft is associated with contractile dysfunction of the left ventricle. Circulation 1996;93:720-729.Google Scholar
  61. 61.
    Szabolcs M, Michler RE, Yang X, Aji W, Roy D, Athan E, Sciacca RR, Minanov OP, Cannon PJ. Apoptosis of cardiac myocytes during cardiac allograft rejection. Relation to induction of nitric oxide synthase. Circulation 1996;94:1665- 1673.Google Scholar
  62. 62.
    Haywood GA, Tsao PS, von der Leyen HE, Mann MJ, Keeling PJ, Trindade PT, Lewis NP, Byrne CD, Rickenbacher PR, Bishopric NH, Cooke JP, McKenna WJ, Fowler MB. Expression of inducible nitric oxide synthase in human heart failure. Circulation 1996;93:1087-1094.Google Scholar
  63. 63.
    Satoh M, Nakamura M, Tamura G, Makita S, Segawa I, Tashiro A, Satodate R, Hiramori K. Inducible nitric oxide synthase and tumor necrosis factor-alpha in myocardium in human dilated cardiomyopathy. J Am Coll Cardiol 1997;29:716-724.Google Scholar
  64. 64.
    Habib FM, Springall DR, Davies GJ, Oakley CM, Yacoub MH, Polak JM. Tumour necrosis factor and inducible 34 Jugdutt nitric oxide synthase in dilated cardiomyopathy. Lancet 1996;347:1151-1155.Google Scholar
  65. 65.
    Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: The role of oxidant stress. Circ Res 2000;87:840-844.Google Scholar
  66. 66.
    Youhua Z, Shouchun X. Increased vulnerability of hypertrophied myocardium to ischemia and reperfusion injury. Relation to cardiac renin-angiotensin system. Chin Med J 1995;108:28-32.Google Scholar
  67. 67.
    Sun Y, Weber KT. Angiotensin II receptor binding following myocardial infarction in the rat. Cardiovasc Res 1994;28:1623-1628.Google Scholar
  68. 68.
    Francis GS, McDonald KM, Cohn JN. Neurohumoral activation in preclinical heart failure. Remodeling and the potential for intervention. Circulation 1993;87(5 Suppl):IV90-96.Google Scholar
  69. 69.
    Brunner HR. Experimental and clinical evidence that angiotensin II is an independent risk factor for cardiovascular disease. Am J Cardiol 2001;87:3C-9C.Google Scholar
  70. 70.
    Hilgers KF, Veelken R, Muller DN, Kohler H, Hartner A, Botkin SR, Stumpf C, Schmieder RE, Gomez RA. Renin uptake by the endothelium mediates vascular angiotensin formation. Hypertension 2001;38:243-248.Google Scholar
  71. 71.
    Griendling KK, Sorescu D, Ushio-Fukai M. NAD(P)H Oxidase: Role in cardiovascular biology and disease. Circ Res 2000;86:494-501.Google Scholar
  72. 72.
    Dzau VJ. Tissue angiotensin and pathobiology of vascular disease. A unifying hypothesis. Hypertension 2001;37:1047-1052.Google Scholar
  73. 73.
    Matsubara H. Pathophysiological role of angiotensin II type 2 receptor in cardiovascular and renal diseases. Circ Res 1998;83:1182-1191.Google Scholar
  74. 74.
    Xu Y, Clanachan AS, Jugdutt BI. Enhanced expression of AT2R, IP3R and PKC? during cardioprotection induced by AT2R blockade. Hypertension 2000;36:506-510.Google Scholar
  75. 75.
    Xu Y, Menon V, Jugdutt BI. Cardioprotection after angiotensin II type 1 blockade involves angiotensin II type 2 receptor expression and activation of protein kinase C-? in acutely reperfused myocardial infarction. Effect of UP269-6 and losartan on AT1 and AT2 receptor expression, and IP3 receptor and PKC? proteins. J Renin-Angiotensin Aldosterone System 2000;1:184-195.Google Scholar
  76. 76.
    Jugdutt BI, Xu Y, Balghith M, Moudgil R, Menon V. Cardioprotection induced by AT1R blockade after reperfused myocardial infarction: Association with regional increase in AT2R, IP3R and PKC? proteins and cGMP. J Cardiovasc Pharmacol & Therapeut 2000;5:301-311.Google Scholar
  77. 77.
    Moudgil R, Xu Y, Menon V, Jugdutt BI. Effect of chronic pretreatment with AT1 receptor antagonism on postischemic functional recovery and AT1/AT2 receptor proteins in isolated working rat hearts. J Cardiovasc Pharmacol & Therapeut 2001;6:183-188.Google Scholar
  78. 78.
    Jugdutt, BI, Xu Y, Balghith M, Menon V. Cardioprotective effects of angiotensin II type 1 receptor blockade with candesartan after reperfused myocardial infarction: Role of angiotensin II type 2 receptor. J Renin-Angiotensin Aldosterone System 2001;2:S162-S166.Google Scholar
  79. 79.
    Jugdutt BI, Balghith M. Enhanced regional AT2 receptor and PKC? expression during cardioprotection induced by AT1 receptor blockade after reperfused myocardial infarction. J Renin-Angiotensin Aldosterone System 2001;2:134-140.Google Scholar
  80. 80.
    Moudgil R, Menon V, Xu Y, Musat-Marcu S, Jugdutt BI. Postischemic apoptosis and functional recovery after angiotensin II type 1 receptor blockade in isolated working rat hearts. J Hypertension 2001;19:1121-1129.Google Scholar
  81. 81.
    Nio Y, Matsubara H, Murasawa S, Kanasaki M, Inada M. Regulation and gene transcription of angiotensin II receptor subtypes in myocardial infarction. J Clin Invest 1995;95:46-54.Google Scholar
  82. 82.
    Haywood GA, Gullestad L, Katsuya T, Hutchinson HG, Pratt RE, Horiuchi M, Fowler MB. AT1 and AT2 angiotensin receptor gene expression in human heart failure. Circulation 1997;95:1201-1206.Google Scholar
  83. 83.
    Unger T, Gohlke P. Tissue renin-angiotensin systems in the heart and vasculature: possible involvement in the cardiovascular actions of converting enzyme inhibitors. Am J Cardiol 1990;65:31-101.Google Scholar
  84. 84.
    Liu YH, Yang XP, Sharov VG, Nass O, Sabbah HN, Peterson E, Carretero OA. Effects of angiotensin-converting enzyme inhibitors and angiotensin II type 1 receptor antagonists in rats with heart failure: Role of kinins and angiotensin type 2 receptors. J Clin Invest 1997;99:1926-1935.Google Scholar
  85. 85.
    Jalowy A, Schulz R, Dorge H, Behrends M, Heush G. Infarct size reduction by AT1-receptor blockade through a signal cascade of AT2-receptor activation, bradykinin and prostaglandins in pigs. J Am Coll Cardiol 1998;32:1787-1796.Google Scholar
  86. 86.
    Bartunek J, Weinberg EO, Tajima M, Rohrbach S, Lorell BH. Angiotensin II type 2 receptor blockade amplifies the early signals of cardiac growth response to angiotensin II in hypertrophied hearts. Circulation 1999;99:22-25.Google Scholar
  87. 87.
    Dörge H, Behrends M, Schulz R, Jalowy A, Heusch G. Attenuation of myocardial stunning by the AT1 receptor antagonist candesartan. Basic Res Cardiol 1999;94:208-214.Google Scholar
  88. 88.
    Ford WR, Clanachan AS, Jugdutt BI. Opposite effects of angiotensin receptor antagonists on recovery of mechanical function after ischemia-reperfusion in isolated working rat hearts. Circulation 1996;94:3087-3089.Google Scholar
  89. 89.
    Xu Y, Dyck J, Ford WR, Clanachan AS, Lopaschuk GD, Jugdutt BI. Angiotensin II type 1 and type 2 receptor protein after acute ischemia-reperfusion in isolated working rat hearts. Am J Physiol Heart Circ Physiol 2002;282:H1206-H1215.Google Scholar
  90. 90.
    Liu Y-H, Yang X-P, Sharov VG, Sigmon DH, Sabbah HN, Carretero OA. Paracrine systems in the cardioprotective effect of angiotensin-converting enzyme inhibitors on myocardial ischemia/reperfusion injury in rats. Hypertension 1996;27:7-13.Google Scholar
  91. 91.
    Ping P, Takano H, Zhang J, Tang X-L, Qiu Y, Li RCX, Banerjee S, Dawn B, Balafonova Z, Bolli R. Isoformselective activation of protein kinase C by nitric oxide in the heart of conscious rabbits. A signaling mechanism for both nitric oxide-induced and ischemia-induced preconditioning. Circ Res 1999;84:587-604.Google Scholar
  92. 92.
    Liu YH, Xu J, Yang XP, Yang F, Shesely E, Carretero OA. Effect of ACE inhibitors and angiotensin II type 1 receptor antagonists on endothelial NO synthase knockout mice with heart failure. Hypertension 2002;39:375-381.Google Scholar
  93. 93.
    Wittstein IS, Kass DA, Pak PH, Maughan WL, Fetics B, Hare JM. Cardiac nitric oxide production due to angiotensin-converting enzyme inhibition decreases beta adrenergic myocardial contractility in patients with dilated cardiomyopathy. J AmColl Cardiol 2001;38:429-435.Google Scholar
  94. 94.
    Matsunaga T, Weihrauch DW, Moniz MC, Tessmer J, Warltier DC, Chilian WM. Angiostatin inhibits coronary angiogenesis during impaired production of nitric oxide. Circulation 2002;105:2185-2191.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  1. 1.Cardiology Division, Department of MedicineUniversity of AlbertaEdmontonCanada

Personalised recommendations