Journal of Statistical Physics

, Volume 110, Issue 3–6, pp 1039–1054 | Cite as

Application of Statistical Physics to Understand Static and Dynamic Anomalies in Liquid Water

  • H. E. Stanley
  • S. V. Buldyrev
  • N. Giovambattista
  • E. La Nave
  • S. Mossa
  • A. Scala
  • F. Sciortino
  • F. W. Starr
  • M. Yamada
Article

Abstract

We present an overview of recent research applying ideas of statistical mechanics to try to better understand the statics and especially the dynamic puzzles regarding liquid water. We discuss recent molecular dynamics simulations using the Mahoney–Jorgensen transferable intermolecular potential with five points (TIP5P), which is closer to real water than previously-proposed classical pairwise additive potentials. Simulations of the TIP5P model for a wide range of deeply supercooled states, including both positive and negative pressures, reveal (i) the existence of a non-monotonic temperature of maximum density line and a non-reentrant spinodal, (ii) the presence of a low-temperature phase transition. The take-home message for the static aspects is that what seems to “matter” more than previously appreciated is local tetrahedral order, so that liquid water has features in common with SiO2 and P, as well as perhaps Si and C. To better understand dynamic aspects of water, we focus on the role of the number of diffusive directions in the potential energy landscape. What seems to “matter” most is not values of thermodynamic parameters such as temperature T and pressure P, but only the value of a parameter characterizing the potential energy landscape—just as near a critical point what matters is not the values of T and P but rather the values of the correlation length.

Mode coupling theory low-density liquid high-density liquid homogeneous nucleation structural heterogeneities instantaneous normal mode 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    P. G. Debenedetti, Metastable Liquids (Princeton University Press, Princeton, 1996).Google Scholar
  2. 2.
    P. G. Debenedetti and H. E. Stanley, The novel physics of water at low temperatures, Phys. Today (submitted).Google Scholar
  3. 3.
    M.-C. Bellissent-Funel, ed., Hydration Processes in Biology: Theoretical and Experimental Approaches (IOS Press, Amsterdam, 1999).Google Scholar
  4. 4.
    O. Mishima and H. E. Stanley, Nature 396:329(1998).Google Scholar
  5. 5.
    P. Ball, Life's Matrix: A Biography of Water (Farrar Straus and Giroux, New York, 2000).Google Scholar
  6. 6.
    V. Brazhkin, S. V. Buldyrev, V. Ryzhov, and H. E. Stanley, eds., New Kinds of Phase Transition Phenomena, Proc. Volga River NATO Advanced Research Workshop (Kluwer, Dordrecht, 2002).Google Scholar
  7. 7.
    H. E. Stanley, J. Phys. A 12:L329(1979).Google Scholar
  8. 8.
    H. E. Stanley and J. Teixeira, J. Chem. Phys. 73:3404(1980).Google Scholar
  9. 9.
    A. Geiger and H. E. Stanley, Phys. Rev. Lett. 49:1749(1982).Google Scholar
  10. 10.
    L. Bosio, J. Teixeira, and H. E. Stanley, Phys. Rev. Lett. 46:597(1981).Google Scholar
  11. 11.
    R. L. Blumberg, H. E. Stanley, A. Geiger, and P. Mausbach, J. Chem. Phys. 80:5230(1984).Google Scholar
  12. 12.
    E. Shiratani and M. Sasai, J. Chem. Phys. 108:3264(1998).Google Scholar
  13. 13.
    P. H. Poole, F. Sciortino, U. Essmann, and H. E. Stanley, Nature 360:324(1992); Phys. Rev. E 48:3799(1993); F. Sciortino, P. H. Poole, U. Essmann, H. E. Stanley, Ibid. 55:727(1997); S. Harrington, R. Zhang, P. H. Poole, F. Sciortino, and H. E. Stanley, Phys. Rev. Lett. 78:2409(1997).Google Scholar
  14. 14.
    T. Andrews, Phil. Trans. 159:575(1869).Google Scholar
  15. 15.
    O. Mishima, H. E. Stanley, Nature 392:164(1998).Google Scholar
  16. 16.
    O. Mishima, Phys. Rev. Lett. 85:334(2000).Google Scholar
  17. 17.
    P. W. Bridgman, Proc. Amer. Acad. Arts Sci. 47:441(1912).Google Scholar
  18. 18.
    L. F. Evans, J. Appl. Phys. 38:4930(1967).Google Scholar
  19. 19.
    R. S. Smith and B. D. Kay, Nature 398:788(1999).Google Scholar
  20. 20.
    K. P. Stevenson, G. A. Kimmel, Z. Dohnalek, R. S. Smith, and B. D. Kay, Science 283:1505(1999).Google Scholar
  21. 21.
    M.-C. Bellissent-Funel, Europhys. Lett. 42:161(1998).Google Scholar
  22. 22.
    M.-C. Bellissent-Funel, L. Bosio, J. Chem. Phys. 102:3727(1995).Google Scholar
  23. 23.
    A. K. Soper and M. A. Ricci, Phys. Rev. Lett. 84:2881(2000).Google Scholar
  24. 24.
    M. A. Ricci and A. K. Soper, Phys. A 304:43(2002).Google Scholar
  25. 25.
    O. Mishima, J. Chem. Phys. 100:5910(1994).Google Scholar
  26. 26.
    P. H. Poole, F. Sciortino, T. Grande, H. E. Stanley, and C. A. Angell, Phys. Rev. Lett. 73:1632(1994).Google Scholar
  27. 27.
    C. F. Tejero and M. Baus, Phys. Rev. E 57:4821(1998).Google Scholar
  28. 28.
    F. W. Starr, S. Sastry, E. La Nave, A. Scala, H. E. Stanley, and F. Sciortino, Phys. Rev. E 63:041201(2001).Google Scholar
  29. 29.
    A. Scala, F. W. Starr, E. La Nave, H. E. Stanley, and F. Sciortino, Phys. Rev. E 62:8016(2000).Google Scholar
  30. 30.
    M. Yamada, S. Mossa, H. E. Stanley, and F. Sciortino, Phys. Rev. Lett. 88:195701(2002); cond-mat/0202094.Google Scholar
  31. 31.
    S. Sastry, P. G. Debenedetti, F. Sciortino, and H. E. Stanley, Phys. Rev. E 53:6144(1996).Google Scholar
  32. 32.
    H. Tanaka, J. Chem. Phys. 105:5099(1996).Google Scholar
  33. 33.
    H. Tanaka, Nature 380:328(1996).Google Scholar
  34. 34.
    P. A. Netz, F. W. Starr, H. E. Stanley, and M. C. Barbosa, J. Chem. Phys. 115:344(2001).Google Scholar
  35. 35.
    F. W. Starr, C. A. Angell, and H. E. Stanley, cond-mat/9903451.Google Scholar
  36. 36.
    P. C. Hemmer and G. Stell, Phys. Rev. Lett. 24:1284(1970).Google Scholar
  37. 37.
    G. Stell and P. C. Hemmer, J. Chem. Phys. 56:4274(1972).Google Scholar
  38. 38.
    C. K. Hall and G. Stell, Phys. Rev. A 7:1679(1973).Google Scholar
  39. 39.
    M. R. Sadr-Lahijany, A. Scala, S. V. Buldyrev, and H. E. Stanley, Phys. Rev. Lett. 81:4895(1998).Google Scholar
  40. 40.
    M. R. Sadr-Lahijany, A. Scala, S. V. Buldyrev, and H. E. Stanley, Phys. Rev. E 60:6714(1999).Google Scholar
  41. 41.
    A. Scala, M. R. Sadr-Lahijany, N. Giovambattista, S. V. Buldyrev, and H. E. Stanley, Phys. Rev. E 63:041202(2001).Google Scholar
  42. 42.
    A. Scala, M. R. Sadr-Lahijany, N. Giovambattista, S. V. Buldyrev, and H. E. Stanley, J. Stat. Phys. 100:97(2000).Google Scholar
  43. 43.
    E. A. Jagla, Phys. Rev. E 58:1478(1998).Google Scholar
  44. 44.
    E. A. Jagla, J. Chem. Phys. 111:8980(1999).Google Scholar
  45. 45.
    E. A. Jagla, Phys. Rev. E 63:061509(2001).Google Scholar
  46. 46.
    G. Franzese, G. Malescio, A. Skibinsky, S. V. Buldyrev, and H. E. Stanley, Nature 409:692(2001).Google Scholar
  47. 47.
    G. Malescio and G. Pellicane, Phys. Rev. E 63:020501(2001).Google Scholar
  48. 48.
    F. H. Stillinger and T. Head-Gordon, Phys. Rev. E 47:2484(1993).Google Scholar
  49. 49.
    F. H. Stillinger and D. K. Stillinger, Phys. A 244:358(1997).Google Scholar
  50. 50.
    T. Head-Gordon and F. H. Stillinger, J. Chem. Phys. 98:3313(1993).Google Scholar
  51. 51.
    N. Guisoni and V. B. Henriques, J. Chem. Phys. 115:5238(2001).Google Scholar
  52. 52.
    S. V. Buldyrev, G. Franzese, N. Giovambattista, G. Malescio, M. R. Sadr-Lahijany, A. Scala, A. Skibinsky, and H. E. Stanley, Phys. A 304:23(2002).Google Scholar
  53. 53.
    F. W. Starr, M.-C. Bellissent-Funel, and H. E. Stanley, Phys. Rev. E 60:1084(1999).Google Scholar
  54. 54.
    M. Sasai, Phys. 285:315(2000).Google Scholar
  55. 55.
    S. J. Henderson and R. J. Speedy, J. Phys. E: Scientific Instrumentation 13:778(1980).Google Scholar
  56. 56.
    J. L. Green, D. J. Durben, G. H. Wolf, and C. A. Angell, Science 249:R649(1990).Google Scholar
  57. 57.
    H. Tanaka, J. Chem. Phys. 105:5099(1996).Google Scholar
  58. 58.
    P. Gallo, F. Sciortino, P. Tartaglia, and S.-H. Chen, Phys. Rev. Lett. 76:2730(1996).Google Scholar
  59. 59.
    F. W. Starr, F. Sciortino, and H. E. Stanley, Phys. Rev. E 60:6757(1999)Google Scholar
  60. 60.
    F. W. Starr, S. T. Harrington, F. Sciortino, and H. E. Stanley, Phys. Rev. Lett. 82:3629(1999).Google Scholar
  61. 61.
    J. R. Errington and P. G. Debenedetti, Nature 409:318(2001).Google Scholar
  62. 62.
    I. I. Vaisman, L. Perera, and M. L. Berkovitz, J. Chem. Phys. 98:9859(1993).Google Scholar
  63. 63.
    M. W. Mahoney and W. L. Jorgensen, J. Chem. Phys. 112:8910(2000)Google Scholar
  64. 64.
    M. W. Mahoney and W. L. JorgensenIbid. 114:363(2001).Google Scholar
  65. 65.
    F. H. Stillinger and A. Rahman, J. Chem. Phys. 60:1545(1974).Google Scholar
  66. 66.
    J. M. Sorenson, G. Hura, R. M. Glaeser, and T. Head-Gordon, J. Chem. Phys. 113:9149(2000).Google Scholar
  67. 67.
    P. A. Netz, F. W. Starr, H. E. Stanley, and M. C. Barbosa, J. Chem. Phys. 115:344(2001); cond-mat/0102196Google Scholar
  68. 68.
    P. A. Netz, F. W. Starr, H. E. Stanley, and M. C. Barbosa, cond-mat/0201130Google Scholar
  69. 69.
    P. A. Netz, F. Starr, M. C. Barbosa, and H. E. Stanley, cond-mat/0201138.Google Scholar
  70. 70.
    P. H. Poole, M. Hemmati, and C. A. Angell, Phys. Rev. Lett. 79:2281(1997).Google Scholar
  71. 71.
    I. Saika-Voivod, F. Sciortino, and P. H. Poole, Phys. Rev. E 63:011202(2001).Google Scholar
  72. 72.
    E. G. Ponyatovskii, JETP Lett. 66:281(1997).Google Scholar
  73. 73.
    E. G. Ponyatovskii and O. I. Bakalov, Mater. Sci. Rep. 8:147(1992).Google Scholar
  74. 74.
    M. Togaya, Phys. Rev. Lett. 79:2474(1997).Google Scholar
  75. 75.
    J. Glosli and F. H. Ree, Phys. Rev. Lett. 82:4659(1999).Google Scholar
  76. 76.
    S. Sastry and C. A. Angell (2002) preprint.Google Scholar
  77. 77.
    Y. Katayama, T. Mizutani, W. Utsumi, O. Shimomure, M. Yamakata, and K.-I. Funakoshi, Nature 403:170(2000).Google Scholar
  78. 78.
    G. Ruocco et al., (2002) preprint.Google Scholar
  79. 79.
    C. A. Angell, (private communication) has pointed out that the fact that the low density liquid phase of phosphorus that participates in a liquid-liquid equilibrium contains tetrahedral molecules, is not of as much significance as originally hoped. There are no third neighbor correlations in P4 phosphorus, which is more like carbon tetrachloride than water in its behavior. The liquid-liquid phase transition line in the phase diagram runs vertical to the P axis, instead of nearly horizontal as in the case of water, and the liquid-liquid equilibrium is due to electron redistribution (i.e., chemical bonding changes) rather than molecular packing changes as in the case of water. Such equilibria will likely be found in the future in many cases of molecular liquids subjected to high pressure (simply because polymerized forms occupy less volume)—and molecular shapes in the low pressure phase will be found to be a minor factor. We thank C. A. Angell for sharing his observations with us.Google Scholar
  80. 80.
    C. A. Angell, R. D. Bresel. M. Hemmati, E. J. Sare, and J. C. Tucker, Phys. Chem. Phys. 2:1559(2000).Google Scholar
  81. 81.
    S. Sastry, P. G. Debenedetti, and F. H. Stillinger, Nature 393:554(1998).Google Scholar
  82. 82.
    F. Sette, M. H. Krish, C. Masciovecchio, G. Ruocco, and G. Monaco, Science 280:1550(1998).Google Scholar
  83. 83.
    P. Lunkenheimer, A. Pimenov, and A. Loidl, Phys. Rev. Lett. 78:2995(1997).Google Scholar
  84. 84.
    W. Götze, J. Phys.: Cond. Mat. 11:A1(1999).Google Scholar
  85. 85.
    K. Binder et al., in Complex Behavior of Glassy Systems, M. Rubí and C. Perez-Vicente, eds. (Springer, Berlin, 1997).Google Scholar
  86. 86.
    W. Kob, J. Phys.: Cond. Mat. 11:R85(1999).Google Scholar
  87. 87.
    M. Mézard and G. Parisi, J. Phys.: Cond. Mat. 11:A157(1999).Google Scholar
  88. 88.
    R. Speedy, J. Chem. Phys. 110:54559(1999).Google Scholar
  89. 89.
    R. Speedy, J. Chem. Phys. B 103:4060(1999).Google Scholar
  90. 90.
    M. Shultz, Phys. Rev. B 57:11319(1998).Google Scholar
  91. 91.
    D. C. Wallace, Phys. Rev. E 56:4179(1997).Google Scholar
  92. 92.
    P. G. Debenedetti and F. H. Stillinger, Nature 410:259(2001).Google Scholar
  93. 93.
    I. Saika-Voivod, P. H. Poole and F. Sciortino, Nature 412:514(2001).Google Scholar
  94. 94.
    S. Sastry, Nature 409:164(2001).Google Scholar
  95. 95.
    F. H. Stillinger and T. A. Weber, Phys. Rev. A 28:2408(1983).Google Scholar
  96. 96.
    R. O. Davies and G. O. Jones, Adv. in Phys. 2:370(1953).Google Scholar
  97. 97.
    M. Goldstein, J. Chem. Phys. 51:3728(1969).Google Scholar
  98. 98.
    T. Keyes, J. Phys. Chem. A 101:2921(1997).Google Scholar
  99. 99.
    W. Li and T. Keyes, J. Chem. Phys. 111:5503(1999).Google Scholar
  100. 100.
    T. Keyes, J. Chem. Phys. 101:5081(1994).Google Scholar
  101. 101.
    J. D. Gezelter, E. Rabani, and B. J. Berne, J. Chem. Phys. 107:4618(1997).Google Scholar
  102. 102.
    E. La Nave, A. Scala, F. W. Starr, H. E. Stanley, and F. Sciortino, Phys. Rev. E 64:036102(2001).Google Scholar
  103. 103.
    S. Bembenek and B. Laird, Phys. Rev. Lett. 74:936(1995).Google Scholar
  104. 104.
    W. Li, T. Keyes, and F. Sciortino, J. Chem. Phys. 108:252(1998).Google Scholar
  105. 105.
    E. La Nave, A. Scala, F. W. Starr, F. Sciortino, and H. E. Stanley, Phys. Rev. Lett. 84:4605(2000).Google Scholar
  106. 106.
    E. La Nave, H. E. Stanley, and F. Sciortino, Phys. Rev. Lett. 88:035501(2002).Google Scholar
  107. 107.
    L. Angelani, G. Ruocco, A. Scala, and F. Sciortino, Phys. Rev. Lett. 85:5356(2000).Google Scholar
  108. 108.
    M. Sasai, Proc. International Conference on Slow Dynamics and Glass Transition (Bangalore, India, 6–10 January 2002).Google Scholar
  109. 109.
    F. Sciortino and P. Tartaglia, Phys. Rev. Lett. 78:2385(1997).Google Scholar
  110. 110.
    L. Angelani, R. Di Leonardo, G. Ruocco, A. Scala, and F. Sciortino, Phys. Rev. Lett. 85:5356(2000).Google Scholar
  111. 111.
    T. Keyes, Phys. Rev. E 62:7905(2000).Google Scholar
  112. 112.
    G. Adam and J. H. Gibbs, J. Chem. Phys. 43:139(1965).Google Scholar
  113. 113.
    T. B. Schrøder, S. Sastry, J. C. Dyre, and S. C. Glotzer, J. Chem. Phys. 112:9834(2000).Google Scholar
  114. 114.
    A. Heuer, Phys. Rev. Lett. 78:4051(1997).Google Scholar
  115. 115.
    F. Sciortino, W. Kob, and P. Tartaglia, Phys. Rev. Lett. 83:3214(1999).Google Scholar
  116. 116.
    A. Scala, F. W. Starr, E. La Nave, F. Sciortino, and H. E. Stanley, Nature 406:166(2000).Google Scholar
  117. 117.
    I. Ohmine and H. Tanaka, Chem. Rev. 93:2545(1993).Google Scholar
  118. 118.
    N. Giovambattista, F. W. Starr, F. Sciortino, S. V. Buldyrev, and H. E. Stanley, Phys. Rev. E 65:041502(2002).Google Scholar
  119. 119.
    H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys. Chem. 91:6269(1987).Google Scholar
  120. 120.
    M. Hurley and P. Harrowell, Phys. Rev. E 52:1694(1995).Google Scholar
  121. 121.
    W. Kob, C. Donati, S. J. Plimpton, P. H. Poole, and S. C. Glotzer, Phys. Rev. Lett. 79:2827(1997).Google Scholar
  122. 122.
    C. Donati, J. F. Douglas, W. Kob, S. J. Plimpton, P. H. Poole, and S. C. Glotzer, Phys. Rev. Lett. 80:2338(1998).Google Scholar
  123. 123.
    B. Doliwa and A. Heuer, Phys. Rev. Lett. 80:4915(1998).Google Scholar
  124. 124.
    I. Ohmine and S. Saito, Acc. Chem. Res. 32:741(1999).Google Scholar
  125. 125.
    F. Sciortino, A. Geiger, and H. E. Stanley, Nature 354:218(1991).Google Scholar
  126. 126.
    F. Sciortino, A. Geiger, and H. E. Stanley, J. Chem. Phys. 96:3857(1992).Google Scholar
  127. 127.
    J. C. Dyre, Phys. Rev. E 59:2458(1999).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • H. E. Stanley
    • 1
  • S. V. Buldyrev
    • 1
  • N. Giovambattista
    • 1
  • E. La Nave
    • 1
    • 2
  • S. Mossa
    • 1
  • A. Scala
    • 1
    • 2
  • F. Sciortino
    • 2
  • F. W. Starr
    • 3
  • M. Yamada
    • 1
  1. 1.Center for Polymer Studies and Department of PhysicsBoston UniversityBoston
  2. 2.Istituto Nazionale di Fisica della Materia and INFM Center for Statistical Mechanics and ComplexityDipartimento di Fisica Università di Roma La SapienzaRomaItaly
  3. 3.Polymers Division and Center for Theoretical and Computational Materials ScienceNational Institute of Standards and TechnologyGaithersburg

Personalised recommendations