Journal of Statistical Physics

, Volume 110, Issue 3–6, pp 911–943 | Cite as

A Theory for Quantum Accelerator Modes in Atom Optics

  • Shmuel Fishman
  • Italo Guarneri
  • Laura Rebuzzini
Article

Abstract

Unexpected accelerator modes were recently observed experimentally for cold cesium atoms when driven in the presence of gravity. A detailed theoretical explanation of this quantum effect is presented here. The theory makes use of invariance properties of the system, that are similar to the ones of solids, leading to a separation into independent kicked rotor problems. The analytical solution makes use of an asymptotic approximation very similar to the semiclassical one, except that the small parameter is not Planck's constant, but rather the detuning from the frequency that is resonant in absence of gravity.

Kicked Rotors cold atoms optics phase space strucures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    For reviews, see, e.g., F. M. Izrailev, Simple models of quantum chaos: Spectrum and eigenfunctions, Phys. Rep. 196:299–393 (1990).Google Scholar
  2. 2.
    S. Fishman, in Proceedings of the International School of Physics Enrico Fermi: Varenna Course CXIX, G. Casati, I. Guarneri, and U. Smilansky, eds. (North-Holland, 1993), p. 187.Google Scholar
  3. 3.
    B. V. Chirikov, A universal instability of many-dimensional oscillator systems, Phys. Rep. 52:263(1979).Google Scholar
  4. 4.
    A. J. Lichtenterg and M. A. Liberman, Regular and Chaotic Dynamics (Springer-Verlag, NY, 1992).Google Scholar
  5. 5.
    G. M. Zaslavsky, M. Edelman, and B. A. Niyazov, Self-similarity, renormalization, and phase space nonuniformity of Hamiltonian chaotic dynamics, Chaos 7:159–181 (1997).Google Scholar
  6. 6.
    G. M. Zaslavsky and M. Edelman, Hierarchical structures in the phase space and fractional kinetics: I. Classical systems, Chaos 10:135–146 (2000).Google Scholar
  7. 7.
    S. Fishman, D. R. Grempel, and R. E. Prange, Chaos, quantum recurrences, and Anderson localization, Phys. Rev. Lett. 49:509–512 (1982).Google Scholar
  8. 8.
    D. R. Grempel, R. E. Prange, and S. Fishman, Quantum dynamics of a nonintegrable system, Phys. Rev. A 29:1639–1647 (1984).Google Scholar
  9. 9.
    J. D. Hanson, E. Ott, and T. M. Antonsen, Influence of finite wavelength on the quantum kicked rotator in the semiclassical regime, Phys. Rev. A 29:819–825 (1984).Google Scholar
  10. 10.
    A. Iomin, S. Fishman, and G. M. Zaslavsky, Quantum localization for a kicked rotor with accelerator mode islands, Phys. Rev. E 65:036215(2002) (9 pages).Google Scholar
  11. 11.
    A. Iomin and G. M. Zaslavsky, Hierarchical structures in the phase space and fractional kinetics: II. Immense delocalization in quantized systems, Chaos 10:147–152 (2000).Google Scholar
  12. 12.
    B. Sundaram and G. M. Zaslavsky, Anomalous transport and quantum-classical correspondence, Phys. Rev. E 59:7231–7234 (1999).Google Scholar
  13. 13.
    F. M. Izrailev and D. L. Shepelyansky, Quantum resonance for rotator in nonlinear periodic field, Dok. Akad. Nauk SSSR 249:1103–1107 (1979).Google Scholar
  14. 14.
    G. Casati and I. Guarneri, Non recurrent behaviour in quantum mechanics, Comm. Math. Phys. 95:121(1984).Google Scholar
  15. 15.
    G. Casati, B. V. Chirikov, D. L. Shepelyansky, and I. Guarneri, Relevance of classical chaos in quantum mechanics in the hydrogen atom in a monochromatic field, Phys. Rep. 154:2(1987).Google Scholar
  16. 16.
    G. Casati, I. Guarneri, and D. L. Shepelyansky, Hydrogen atom in monochromatic field: Chaos and dynamical photonic localization, IEEE J. Quantum. Electron. 24: 1420–1444 (1988), and references therein.Google Scholar
  17. 17.
    E. J. Galvez, J. E. Sauer, L. Moorman, P. M. Koch, and D. Richards, Microwave ionization of H atoms: Breakdown of classical dynamics for high frequencies, Phys. Rev. Lett. 61:2011–2014 (1988).Google Scholar
  18. 18.
    J. E. Bayfield, G. Casati, I. Guarneri, and D. W. Sokol, Localization of classically chaotic diffusion for hydrogen atoms in microwave fields, Phys. Rev. Lett. 63:364–367 (1989).Google Scholar
  19. 19.
    M. Arndt, A. Buchleitner, R. N. Mantegna, and H. Walther, Experimental study of quantum and classical limits in microwave ionization of rubidium Rydberg atoms, Phys. Rev. Lett. 67:2435–2438 (1991).Google Scholar
  20. 20.
    D. A. Steck, V. Milner, W. H. Oskay, and M. G. Raizen, Quantitative study of amplitude noise effects on dynamical localization, Phys. Rev. E 62:3461–3475 (2000).Google Scholar
  21. 21.
    F. L. Moore, J. C. Robinson, C. F. Bharucha, Bala Sundaram, and M. G. Raizen, Atom optics realization of the quantum delta-kicked rotor, Phys. Rev. Lett. 75:4598–4601 (1995).Google Scholar
  22. 22.
    C. F. Bharucha, J. C. Robinson, F. L. Moore, Qian Niu, Bala Sundaram, and M. G. Raizen, Dynamical localization of ultracold sodium atoms, Phys. Rev. E 60:3881–3895 (1999).Google Scholar
  23. 23.
    B. G. Klappauf, W. H. Oskay, D. A. Steck, and M. G. Raizen, Quantum chaos with cesium atoms: Pushing the boundaries, Phys. (Amsterdam) 131 D:78–89 (1999).Google Scholar
  24. 24.
    H. Ammann, R. Gray, I. Shvarchuck, and N. Christensen, Quantum delta-kicked rotor: Experimental observation of decoherence, Phys. Rev. Lett. 80:4111–4115 (1998).Google Scholar
  25. 25.
    H. Ammann, R. Gray, I. Shvarchuck, and N. Christensen, Experimental observation of dynamical localization and decoherence in the atomic δ-kicked rotor, J. Phys. B 31:2449–2455 (1998)Google Scholar
  26. 26.
    R. Graham, M. Schlautmann, and P. Zoller, Dynamical localization of atomic-beam deflection by a modulated standing light wave, Phys. Rev. A 45:R19-R22 (1992).Google Scholar
  27. 27.
    C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-Photon Interactions: Basic Processes and Applications (Wiley, New-York, 1992).Google Scholar
  28. 28.
    R. Blumel, S. Fishman, and U. Smilansky, Excitation of molecular rotation by periodic microwave pulses. A testing ground for Anderson localization, J. Chem. Phys. 84: 2604–2614 (1986).Google Scholar
  29. 29.
    F. M. Izrailev, Limiting quasienergy statistics for simple quantum systems, Phys. Rev. Lett. 56:541–544 (1986).Google Scholar
  30. 30.
    W. H. Oskay, D. A. Steck, V. Milner, B. G. Klappauf, and M. G. Raizen, Ballistic peaks at quantum resonance, Opt. Comm. 179:137–148 (2000).Google Scholar
  31. 31.
    S. Wimberger, I. Guarneri and S. Fishman, in preparation.Google Scholar
  32. 32.
    M. K. Oberthaler, R. M. Godun, M. B. d'Arcy, G. S. Summy, and K. Burnett, Observation of quantum accelerator modes, Phys. Rev. Lett. 83:4447–4451 (1999).Google Scholar
  33. 33.
    R. M. Godun, M. B. d'Arcy, M. K. Oberthaler, G. S. Summy, and K. Burnett, Quantum accelerator modes: A tool for atom optics, Phys. Rev. A 62:013411(2000) (8 pages).Google Scholar
  34. 34.
    M. B. d'Arcy, R. M. Godun, M. K. Oberthaler, G. S. Summy, K. Burnett, and S. A. Gardiner, Approaching classicality in quantum accelerator modes through decoherence, Phys. Rev. E 64:056233(2001) (15 pages).Google Scholar
  35. 35.
    S. Fishman, I. Guarneri, and L. Rebuzzini, Stable quantum resonances in atom optics, Phys. Rev. Lett. 89:084101(2002).Google Scholar
  36. 36.
    D. L. Shepelyansky, Some statistical properties of simple classically stochastic quantum systems, Phys. D 8:208–222 (1983).Google Scholar
  37. 37.
    G. Casati, G. Mantica, and D. L. Shepelyansky, Regular and anomalous quantum diffusion in the Fibonacci kicked rotator, Phys. Rev. E 63:066217(2001) (6 pages), and references therein.Google Scholar
  38. 38.
    L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 3d Ed. (Pergamon, Oxford, 1977), p. 76.Google Scholar
  39. 39.
    T. Geisel, G. Radons, and J. Rubner, Kolmogorov-Arnol'd-Moser barriers in the quantum dynamics of chaotic systems, Phys. Rev. Lett. 57:2883–2886 (1986).Google Scholar
  40. 40.
    R. S. MacKay and J. D. Meiss, Relation between quantum and classical thresholds for multiphoton ionization of excited atoms, Phys. Rev. A 37:4702–4706 (1988).Google Scholar
  41. 41.
    J. D. Meiss, Comment on "Microwave ionization of H atoms: Breakdown of classical dynamics for high frequencies," Phys. Rev. Lett. 62:1576(1989).Google Scholar
  42. 42.
    D. R. Grempel, S. Fishman, and R. E. Prange, Finite-Planck's-constant scaling at stochastic transitions of dynamical systems, Phys. Rev. Lett. 53:1212–1215 (1984).Google Scholar
  43. 43.
    S. Fishman, D. R. Grempel and R. E. Prange, Temporal crossover from classical to quantal behavior near dynamical critical points, Phys. Rev. A 36:289–305 (1987).Google Scholar
  44. 44.
    See, e.g., ref. 38, Chap. VII.Google Scholar
  45. 45.
    V. V. Sokolov, O. V. Zhirov, and G. Casati, Quantum resonances of the kicked rotor and the SU(q) group, Phys. Rev. Lett. 84:3566–3569 (2000).Google Scholar
  46. 46.
    For a review see, e.g., G. Nenciu, Dynamics of band electrons in electric and magnetic fields: Rigorous justification of the effective Hamiltonians, Rev. Mod. Phys. 63:91–127 (1993) and references therein.Google Scholar
  47. 47.
    Q. Niu, X-G. Zhao, G. A. Georgakis, and M. G. Raizen, Atomic Landau-Zener tunneling and Wannier-Stark ladders in optical potentials, Phys. Rev. Lett. 76:4504–4507 (1996).Google Scholar
  48. 48.
    S. R. Wilkinson, C. F. Bharucha, K. W. Madison, Q. Niu, and M. G. Raizen, Observation of Atomic Wannier-Stark Ladders in an Accelerating Optical Potential, Phys. Rev. Lett. 76:4512–4515 (1996).Google Scholar
  49. 49.
    M. Ben Dahan, E. Peik, J. Reichel, Y. Castin, and C. Salomon, Bloch oscillations of atoms in an optical potential, Phys. Rev. Lett. 76:4508–4511 (1996).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Shmuel Fishman
    • 1
  • Italo Guarneri
    • 2
    • 3
  • Laura Rebuzzini
    • 2
  1. 1.Physics DepartmentTechnion, HaifaIsrael
  2. 2.Centro di Ricerca per i Sistemi DinamiciUniversità dell'Insubria a ComoComoItaly
  3. 3.Istituto Nazionale per la Fisica della MateriaMilanoItaly

Personalised recommendations