Biochemistry (Moscow)

, Volume 68, Issue 1, pp 111–115

“Chitin-Specific” Peroxidases in Plants

  • I. V. Maksimov
  • E. A. Cherepanova
  • R. M. Khairullin


The activity of various plant peroxidases and the ability of their individual isoforms to bind chitin was studied. Some increase in peroxidase activity was observed in crude extracts in the presence of chitin. Activated peroxidases of some species fell in the fraction not sorbed on chitin and those of other species can bind chitin. Only anionic isoperoxidases from oat (Avena sativa), rice (Oryza sativa), horseradish (Armoracia rusticana), garden radish (Raphanus sativus var. radicula), peanut (Arachis hypogaea), and tobacco (Nicotiana tabacum Link et Otto) were sorbed on chitin. Both anionic and cationic isoforms from pea (Pisum sativum), galega (Galega orientalis), cucumber (Cucumis sativus), and zucchini (Cucurbita pepo L.) were sorbed on chitin. Peroxidase activation under the influence of chitin was correlated to the processes that occur during hypersensitive reaction and lignification of sites, in which pathogenic fungus penetrates into a plant. The role of chitin-specific isoperoxidases in inhibition of fungal growth and connection of this phenomenon with structural characteristics of isoperoxidases are also discussed.

peroxidase isoenzymes chitin activation sorption 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ride, J. P. (1980) Phys. Plant Pathol., 16, 187-196.Google Scholar
  2. 2.
    Yarullina, L. G., Maksimov, I. V., and Yamaleev, A. M. (1997) Mikol. Fitopatol., 31, 65-69.Google Scholar
  3. 3.
    Cadena-Gomes, G., and Nicholson, R. L. (1987) Phys. Mol. Plant Pathol., 31, 51-67.Google Scholar
  4. 4.
    Inoue, S., Aist, J. R., and Marko, V. (1994) Phys. Mol. Plant Pathol., 44, 433-440.Google Scholar
  5. 5.
    Medeghini, B. P., Larenzini, G., Baroni, F. R., Nali, C., and Sgaili, E. (1994) J. Phytopathol., 140, 319-325.Google Scholar
  6. 6.
    Peberdy, J. F. (1989) Biochemistry of Cell Wall and Membranes in Fungi (Kuhn, P. J., ed.) Springer-Verlag, Berlin, pp. 5-21.Google Scholar
  7. 7.
    Barraqueta-Egea, P., and Schauz, K. (1983) Z. Pflanzenkrankheiten Pflanzenschutz., 90, 488-495.Google Scholar
  8. 8.
    Brambl, R., and Gade, W. (1985) Physiol. Plant., 64, 402-408.Google Scholar
  9. 9.
    Inui, H., Kosaki, H., Uno, Y., Tabata, K., and Hirano, S. (1991) Agric. Biol. Chem., 55, 3107-3109.Google Scholar
  10. 10.
    Savich, I. M. (1989) Uspekhi Sovrem. Biol., 107, 406-417.Google Scholar
  11. 11.
    Edreva, A. M. (1991) Fiziol. Rast., 38, 788-800.Google Scholar
  12. 12.
    Kerby, K., and Sommerville, S. (1989) Phys. Mol. Plant Pathol., 35, 329-337.Google Scholar
  13. 13.
    Kazan, K., Goulter, K. C., Way, H. M., and Manners, J. M. (1998) Plant Sci., 136, 207-217.Google Scholar
  14. 14.
    Caruso, C., Chilosi, G., Caporale, C., Leonardi, L., Bertini, L., Magro, P., and Buonocore, V. (1999) Plant Sci., 140, 87-97.Google Scholar
  15. 15.
    Brownleader, M. D., Ahmed, N., Trevan, M., Chaplin, M. F., and Dey, P. M. (1994) Plant Peroxidase Newsletter, 4, 2-13.Google Scholar
  16. 16.
    Brownleader, M. D., Hopkins, J., Mobasheri, A., Dey, P. M., Jakson, P., and Travan, M. (2000) Planta, 210, 668-676.Google Scholar
  17. 17.
    Bradley, D. J., Kjellbom, P., and Lamb, C. J. (1992) Cell, 70, 21-30.Google Scholar
  18. 18.
    Maksimov, I. V., Khairullin, R. M., Yamaleev, A. M., and Yamaleeva, A. A. (1995) in Problems of Biotechnology (Akhmetov, R. R, ed.) [in Russian], Bashkir State University, Ufa, pp. 120-127.Google Scholar
  19. 19.
    Ermakov, A. M., Arasimovich, V. V., and Yarash, N. P. (1987) Biochemical Methods in Plant Research [in Russian], Agropromizdat, Leningrad.Google Scholar
  20. 20.
    Blumenfeld, L. A. (1957) Hemoglobin and Reversible Oxygenation [in Russian], Academy of Sciences of the USSR, Moscow.Google Scholar
  21. 21.
    Tarchevsky, I. A. (2000) Appl. Biochem. Microbiol. (Moscow), 37, 441-455.Google Scholar
  22. 22.
    Gazaryan, I. G. (1992) Biotechnology of Plant and Fungal Peroxidases, in Advances in Science and Technology. Biotechnology [in Russian], Vol. 36, VINITI, Moscow.Google Scholar
  23. 23.
    Siegel, S. M. (1958) J. Am. Chem. Soc., 79, 1628-1632.Google Scholar
  24. 24.
    Keleti, T. (1986) Basic Enzyme Kinetics, Akadémiai Kiadó, Budapest.Google Scholar
  25. 25.
    Mani, B. M., and Metraux, J. P. (1998) Ann. Botany, 82, 535-540.Google Scholar
  26. 26.
    Dangl, J. L., Dietrich, R. A., and Richberg, M. H. (1996) Plant Cell, 8, 1793-1807.Google Scholar
  27. 27.
    Wojtaszek, P. (1997) Biochem. J., 322, 681-692.Google Scholar
  28. 28.
    Khairullin, R. M., Yusupova, Z. R., and Maksimov, I. V. (2000) Fiziol. Rast., 47, 108-113.Google Scholar
  29. 29.
    Apostol, I., Heinshtein, P. F., and Low, P. S. (1989) Plant Physiol., 90, 109-116.Google Scholar
  30. 30.
    Peng, M., and Kuc, J. (1992) Phytopathology, 82, 696-699.Google Scholar
  31. 31.
    Khairullin, R. M., Yusupova, Z. R., and Maksimov, I. V. (2001) Mikol. Fitopatol., 35, No.3, 47-53.Google Scholar
  32. 32.
    Repka, V., and Fisherova, I. (1998) Biol. Plant., 40, 605-615.Google Scholar
  33. 33.
    Espelie, K. E., and Kolattukudy, P. E. (1985) Arch. Biochem. Biophys., 240, 539-545.Google Scholar
  34. 34.
    Dowd, P. F., Lagrimini, L. M., and Nelsen, T. C. (1998) Natural Toxins, 6, 241-249.Google Scholar
  35. 35.
    Penel, C., van Cutsem, P., and Grappin, H. (1999) Phytochemistry, 51, 193-198.Google Scholar
  36. 36.
    Morimoto, S., Tateishi, N., Inuyama, M., Taura, F., Tanaka, H., and Shoyama, Y. (1999) J. Biol. Chem., 274, 26192-26198.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2003

Authors and Affiliations

  • I. V. Maksimov
    • 1
  • E. A. Cherepanova
    • 1
  • R. M. Khairullin
    • 1
  1. 1.Ufa Scientific Center of the Russian Academy of Sciences, pr. Oktyabrya 69Institute of Biochemistry and GeneticsUfaRussia

Personalised recommendations