Breast Cancer Research and Treatment

, Volume 78, Issue 1, pp 37–44

A Novel Aspartic Protease Gene, ALP56, is Up-Regulated in Human Breast Cancer Independently from the Cathepsin D Gene

  • Kei Kondoh
  • Naoki Tsuji
  • Chinatsu Kamagata
  • Masateru Sasaki
  • Daisuke Kobayashi
  • Atsuhito Yagihashi
  • Naoki Watanabe
Article

Abstract

Tumor cell invasion requires expression of degradative enzymes such as plasminogen activator, collagenase, and cathepsins. Cathepsin D, a lysosomal aspartic protease produced constitutively in human breast cancer cell lines, also has mitogenic activity in breast cancer cells. Additionally, high cathepsin D expression is associated with increased risk of metastasis in patients with node-negative breast cancer. Recently, a novel aspartic protease gene, ALP56 (aspartic-like protease 56 kDa), has been identified. To examine possible interrelationships we quantitated ALP56 mRNA and cathepsin D mRNA in breast cancers using reverse transcription polymerase chain reaction. ALP56 mRNA expression was greater in cancers than in noncancerous tissues (p < 0.0001), as was expression of cathepsin D mRNA. ALP56 gene expression was dose-dependently down-regulated in T-47D breast cancer cells treated with estradiol, while cathepsin D was up-regulated. Expression of ALP56 mRNA in estrogen receptor (ER)-positive breast cancers was less than that in ER-negative cancers, and mRNA expression for ALP56 and cathepsin D did not correlate with one another. Thus ALP56 as well as cathepsin D may be a useful target molecule in breast cancer treatment.

ALP56 aspartic protease breast cancer cathepsin D estradiol estrogen receptor molecular targets 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McPherson K, Steel MC, Dixon JM: ABC of breast disease. Breast cancer-epidemiology, risk factors, and genetics. Br Med J 321: 624-628, 2000Google Scholar
  2. 2.
    Fidler IJ, Radinsky R: Search for genes that suppress cancer metastasis. J Nat Cancer Inst 88: 1700-1703, 1996Google Scholar
  3. 3.
    Sappino AP, Busso N, Belin D, Vassalli JD: Increase of urokinase-type plasminogen activator gene expression in human lung and breast carcinomas. Cancer Res 47: 4043-4046, 1987Google Scholar
  4. 4.
    Ogilvie DJ, Hailey JA, Juacaba SF, Lee EC, Tarin D: Collagenase secretion by human breast neoplasms: a clinicopathologic investigation. J Nat Cancer Inst 74: 19-27, 1985Google Scholar
  5. 5.
    Rochefort H, Capony F, Garcia M, Cavailles V, Freiss G, Chambon M, Morisset M, Vignon F: Estrogen-induced lysosomal proteases secreted by breast cancer cells: a role in carcinogenesis? J Cell Biochem 35: 17-29, 1987Google Scholar
  6. 6.
    Fusek M, Vetvicka V.Mitogenic function of human procathepsin D: the role of the propeptide. Biochem J 303: 775-780, 1994Google Scholar
  7. 7.
    Spyratos F, Maudelonde T, Brouillet JP, Brunet M, Defrenne A, Andrieu C, Hacene K, Desplaces A, Rouesse J, Rochefort H, Cathepsin D: an independent prognostic factor for metastasis of breast cancer. Lancet 2: 1115-1118, 1989Google Scholar
  8. 8.
    Tandon AK, Clark GM, Chamness GC, Chirgwin JM, McGuire WL: Cathepsin D and prognosis in breast cancer. N Engl J Med 322: 297-302, 1990Google Scholar
  9. 9.
    Xin H, Stephans JC, Duan X, Harrowe G, Kim E, Grieshammer U, Kingsley C, Giese K: Identification of a novel aspartic-like protease differentially expressed in human breast cancer cell lines. Biochim Biophys Acta 1501: 125-137, 2000Google Scholar
  10. 10.
    Holland PM, Abramson RD, Watson R, Gelfand DH: Detection of specific polymerase chain reaction product by utilizing the 5′-3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc Nat Acad Sci USA 88: 7276-7280, 1991Google Scholar
  11. 11.
    Higuchi R, Fockler C, Dollinger G, Watson R: Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology 11: 1026-1030, 1993Google Scholar
  12. 12.
    Yajima T, Yagihashi A, Kameshima H, Furuya D, Kobayashi D, Hirata K, Watanabe N: Establishment of quantitative reverse transcription-polymerase chain reaction assays for human telomerase-associated genes. Clin Chim Acta 290: 117-127, 2000Google Scholar
  13. 13.
    Herbert V, Lau KS, Gottlieb CW, Bleicher SJ: Coated charcoal immunoassay of insulin. J. Clin. Endocrinol Metab 25: 1375-1384, 1965Google Scholar
  14. 14.
    Gudas JM, Nguyen H, Li T, Cowan KH: Hormone-dependent regulation of BRCA1 in human breast cancer cells. Cancer Res 55: 4561-4565, 1995Google Scholar
  15. 15.
    Garcia M, Salazar-Retana G, Pages A, Richer G, Domergue J, Pages AM, Cavalie G, Martin JM, Lamarque JL, Pau B: Distribution of the Mr 52,000 estrogen-regulated protein in benign breast diseases and other tissues by immunohistochemistry. Cancer Res 46: 3734-3738, 1986Google Scholar
  16. 16.
    Westley BR, May FE: Oestrogen regulates cathepsin D mRNA levels in oestrogen responsive human breast cancer cells. Nucl Acids Res 15: 3773-3786, 1987Google Scholar
  17. 17.
    Ravdin PM: Evaluation of cathepsin D as a prognostic factor in breast cancer. Breast Cancer Res Treat 24: 219-226, 1993Google Scholar
  18. 18.
    Adnane J, Gaudray P, Simon MP, Simony-Lafontaine J, Jeanteur P, Theillet C: Proto-oncogene amplification and human breast tumor phenotype. Oncogene 4: 1389-1395, 1989Google Scholar
  19. 19.
    Borg A, Tandon AK, Sigurdsson H, Clark GM, Ferno M, Fuqua SA, Killander D, McGuire WL: HER-2/neu amplification predicts poor survival in node-positive breast cancer. Cancer Res 50: 4332-4337, 1990Google Scholar
  20. 20.
    Powles TJ, Tillye CR, Jones AL, Ashley SE, Treleaven J, Davey JB, McKinna JA: Prevention of breast cancer with tamoxifen-an update on the Royal Marsden Hospital pilot programme. Eur J Cancer 26: 680-684, 1990Google Scholar
  21. 21.
    Gelber RD, Cole BF, Goldhirsch A, Rose C, Fisher B, Osborne CK, Boccardo F, Gray R, Gordon NH, Bengtsson NO, Sevelda P: Adjuvant chemotherapy plus tamoxifen compared with tamoxifen alone for postmenopausal breast cancer: meta-analysis of quality-adjusted survival. Lancet 347: 1066-1071, 1996Google Scholar
  22. 22.
    Read LD, Keith Jr D, Slamon DJ, Katzenellenbogen BS: Hormonal modulation of HER-2/neu protooncogene messenger ribonucleic acid and p185 protein expression in human breast cancer cell lines. Cancer Res 50: 3947-3951, 1990Google Scholar
  23. 23.
    Bates NP, Hurst HC: An intron 1 enhancer element mediates oestrogen-induced suppression of ERBB2 expression. Oncogene 15: 473-481, 1997Google Scholar
  24. [24.
    Dati C, Antoniotti S, Taverna D, Perroteau I, De Bortoli M: Inhibition of c-erbB-2 oncogene expression by estrogens in human breast cancer cells. Oncogene 5: 1001-1006, 1990Google Scholar
  25. 25.
    Russell KS, Hung MC: Transcriptional repression of the neu protooncogene by estrogen stimulated estrogen receptor. Cancer Res 52: 6624-6629, 1992Google Scholar
  26. 26.
    Cohrs RJ, Goswami BB, Sharma OK: Down regulation of cmyc, c-fos and erb-B during estrogen induced proliferation of the chick oviduct. Biochem Biophys Res Commun 150: 82-88, 1988Google Scholar
  27. 27.
    Vetvicka V, Vetvickova J, Fusek M: Anti-human procathepsin D activation peptide antibodies inhibit breast cancer development. Breast Cancer Res Treat 57: 261-269, 1999Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Kei Kondoh
    • 1
  • Naoki Tsuji
    • 1
  • Chinatsu Kamagata
    • 1
  • Masateru Sasaki
    • 1
  • Daisuke Kobayashi
    • 1
  • Atsuhito Yagihashi
    • 1
  • Naoki Watanabe
    • 1
  1. 1.Division of Laboratory Diagnosis and Department of Clinical Laboratory Medicine, School of MedicineSapporo Medical UniversitySapporoJapan

Personalised recommendations