Combustion, Explosion and Shock Waves

, Volume 39, Issue 1, pp 43–50 | Cite as

Solid‐State Combustion in Mechanically Activated SHS Systems. I. Effect of Activation Time on Process Parameters and Combustion Product Composition

  • M. A. Korchagin
  • T. F. Grigor'eva
  • B. B. Bokhonov
  • M. R. Sharafutdinov
  • A. P. Barinova
  • N. Z. Lyakhov


The factors responsible for the transition from reagent interaction involving a liquid phase in ordinary SHS powder mixtures to solid‐state combustion after preliminary activation of these mixtures in an energy‐intensive planetary mill were studied for Ni + 13 wt. % Al and Ni + 45 wt. % Ti compositions. The dependences of the burning rate and temperature on the duration and conditions of mechanical activation were determined. It is found that the occurrence of solid‐state SHS in a powdermixture is due to the formation of “laminated composites,” in which the reagents are ground to ultrafine size, the area of their contact increases severalfold, and the concentration of nonequilibrium defects is high. In activated samples, heat release proceeds in several stages and at lower temperature than in powder mixtures.

SHS mechanical activation electron microscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. G. Merzhanov, Combustion Processes and Synthesis of Materials [in Russian], Izd. ISMAN, Chernogolovka (1998).Google Scholar
  2. 2.
    A. G. Merzhanov, “Mechanism of combustion of pyrotechnical mixtures of titanium and boron,” Preprint, Joint Inst. of Chem. Phys., Chernogolovka (1978).Google Scholar
  3. 3.
    M. A. Korchagin, T. F. Grigorieva, A. P. Barinova, and N. Z. Lyakhov, “The effect of mechanical treatment on the rate and limits of combustion in SHS processes,” Int. J. SHS, 9, No. 3, 307–320 (2000).Google Scholar
  4. 4.
    M. A. Korchagin, T. F. Grigor'eva, A. P. Barinova, and N. Z. Lyakhov, “Solid-state self-propagating high-temperature synthesis,” Dokl. Ross. Akad. Nauk, 372, No. 1, 40–42 (2000).Google Scholar
  5. 5.
    M. A. Korchagin, T. F. Grigor'eva, A. P. Barinova, and N. Z. Lyakhov, “Solid-state combustion of SHS systems,” in: Chemical Physics of Combustion and Explosion Processes (collected scientific papers) [in Russian], Part 1, Chernogolovka (2000), pp. 90–92.Google Scholar
  6. 6.
    V. I. Itin and Yu. S. Naiborodenko, High-Temperature Synthesis of Intermetallides [in Russian], Izd. Tomsk. Gos. Univ., Tomsk (1989).Google Scholar
  7. 7.
    E. G. Avvakumov, A. R. Potkin, and O. I. Samarin, “A planetary mill,” USSR Inventor's Certificate No. 975068, Buyl. Izobr., No. 43 (1982).Google Scholar
  8. 8.
    J. S. Benjamin, “Mechanical alloying,” Metal. Trans., 1, 2943–2951 (1970).Google Scholar
  9. 9.
    V. V. Rybin, Large Plastic Deformation and Fracture of Metals [in Russian], Metallurgiya, Moscow (1986).Google Scholar
  10. 10.
    R. Z. Valiev and I. V. Aleksandrov, Nanostructural Materials Produced by Large Plastic Deformation [in Russian], Logos, Moscow (2000).Google Scholar
  11. 11.
    R. J. Tarento and G. Blaise, “Studies of the first steps of thin film interdiffusion in the Al—Ni system,” Acta Metall., 37, No. 9, 2305–2312 (1989).Google Scholar
  12. 12.
    V. E. Ovcharenko and E. N. Boyangin, “Effect of aluminum content on thermograms of synthesis of Ni 3Al intermetallide by thermal shock,” Combust. Expl. Shock Waves, 34, No. 6, 636–638 (1998).Google Scholar
  13. 13.
    E. B. Pis'menskaya, A. S. Rogachev, S. G. Bakhtamov, and N. V. Skachkova, “Macrokinetics of thermal explosion in a niobium—aluminum system. I. Basic macrokinetic stages,” Combust. Expl. Shock Waves, 36, No. 2, 193–197 (2000).Google Scholar
  14. 14.
    A. G. Nikolaev, O. N. Fomina, K. B. Povarova, et al., “Synthesis of compact nickel monoaluminide from aluminized nickel powder,” Zh. Neorg. Khim., 38, No. 11, 1780–1783 (1993).Google Scholar
  15. 15.
    T. F. Grigor'eva, M. A. Korchagin, A. P. Barinova, and N. Z. Lyakhov, “Self-propagating high-temperature synthesis and mechanical alloying for production of monophase fine intermetallides,” Materialovedenie, No. 5, 49–53 (2000).Google Scholar
  16. 16.
    N. P. Lyakishev (ed.), Diagram of the State of Binary Metal Systems: Handbook [in Russian], Mashinostroenie, Moscow (1996–2000).Google Scholar
  17. 17.
    V. I. Itin, T. V. Monasevich, and A. D. Bratchikov, “Effect of mechanical activation on the regularities of self-propagating high-temperature synthesis in the titanium—nickel system,” Combust. Expl. Shock Waves, 33, No. 5, 553–555 (1997).Google Scholar
  18. 18.
    F. Charlot, E. Gaffet, B. Zeghmati, et al., “Mechanically activated synthesis studied by x-ray diffraction in the Fe—Al system,” Mater. Sci. Eng., No. A262, 279–288 (1999).Google Scholar
  19. 19.
    V. Gauthier, C. Josse, F. Bernard, et al., “Synthesis of niobium aluminides using mechanically activated self-propagating high-temperature synthesis and mechanically activated annealing process,” Mater. Sci. Eng., A265, 117–128 (1999).Google Scholar
  20. 20.
    E. A. Levashov, V. V. Kurbatkina, and K. V. Kolesnichenko, “Effect of preliminary mechanical activation on the reactivity of SHS mixtures based on titanium,” Izv. Vyssh. Uchebn. Zaved., Tsvet. Metallurg., No. 6, 61–67 (2000).Google Scholar
  21. 21.
    L. Lu, M. O. Lai, and S. Zhang, “Thermodynamic properties of mechanically alloyed nickel and aluminum powders,” Mater. Res. Bull., 29, No. 8, 889–894 (1994).Google Scholar
  22. 22.
    K. N. Egorychev, V. V. Kurbatkina, and E. Yu. Nesterova, “Effect of mechanical activation on interaction in the molybdenum—silicon system,” Izv. Vyssh. Uchebn. Zaved., Tsvet. Metallurg., No. 1, 71–74 (1996).Google Scholar
  23. 23.
    E. G. Avvakumov, Mechanical Methods of Activating Chemical Processes [in Russian], Nauka, Novosibirsk (1986).Google Scholar
  24. 24.
    V. I. Molcahnov, O. G. Selezneva, and E. N. Zhirnov, Activation of Minerals by Grinding [in Russian], Nedra, Moscow (1988).Google Scholar
  25. 25.
    V. V. Boldyrev, “Development of research into the mechanochemistry of inorganic compounds in the USSR,” in: E. G. Avvakumov (ed.), Mechanochemical Synthesis in Inorganic Chemistry [in Russian], Nauka, Novosibirsk (1991), pp. 5–32.Google Scholar
  26. 26.
    P. Yu. Butyagin, “Physical and chemical routes for relaxation of elastic energy in solids. Mechanochemical reactions in binary systems,” ibid., pp. 32–52.Google Scholar
  27. 27.
    V. E. Panin, V. A. Likhachev, and Yu. V. Grinyaev, Structural Levels of Deformation in Solids [in Russian], Nauka, Novosibirsk (1985).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • M. A. Korchagin
    • 1
  • T. F. Grigor'eva
    • 1
  • B. B. Bokhonov
    • 1
  • M. R. Sharafutdinov
    • 1
  • A. P. Barinova
    • 1
  • N. Z. Lyakhov
    • 1
  1. 1.Siberian Division, Russian Academy of SciencesInstitute of Solid‐State Chemistry and MechanochemistryNovosibirsk

Personalised recommendations