Synthese

, Volume 134, Issue 1–2, pp 45–69 | Cite as

Intentional Gaps In Mathematical Proofs

  • Don Fallis
Article

Keywords

Mathematical Proof 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Albers, Donald J., Gerald L. Alexanderson, and Constance Reid: 1990, More Mathematical People, Harcourt Brace Jovanovich, Boston.Google Scholar
  2. Anglin, W. S.: 1991, ‘Mathematics and Value’, Philosophia Mathematica (2) 6(2), 145–173.Google Scholar
  3. Azzouni, Jody: 1994, Metaphysical Myths, Mathematical Practice, Cambridge University Press, New York.Google Scholar
  4. Babai, Laszlo, Lance Fortnow, Leonid A. Levin, and Mario Szegedy: 1991, ‘Checking Computations in Polylogarithmic Time’, Proceedings of the 23rd ACM Symposium on Theory of Computing, pp. 21–31.Google Scholar
  5. Ball, W. W. R.: 1960, A Short Account of the History of Mathematics, Dover Publications, New York.Google Scholar
  6. Blum, Manuel: 1987, ‘How to Prove a Theorem So No One Else Can Claim It’, Proceedings of the International Congress of Mathematicians 1986, American Mathematical Society, Providence, RI, pp. 1444–1451.Google Scholar
  7. Corcoran, John: 1973, ‘Gaps Between Logical Theory and Mathematical Practice’, in Mario Bunge (ed.), The Methodological Unity of Science, D. Reidel Publishing Co., Boston, pp. 23–50.Google Scholar
  8. Dauben, Joseph W.: 1994, ‘Topology: Invariance of Dimension’, Companion Encyclopedia of the History and Philosophy of the Mathematical Sciences, I. Grattan-Guinness, Routledge, pp. 939–946.Google Scholar
  9. Davis, Philip J.: 1972, ‘Fidelity in Mathematical Discourse: Is One and One Really Two?’, American Mathematical Monthly 79(3), 252–263.Google Scholar
  10. Dawson, John W.: 1985, ‘The Reception of Godel's Incompleteness Theorems’, PSA 1984, 2, 253–271.Google Scholar
  11. Descartes, René: 1952, The Geometry of René Descartes, trans. David E. Smith and Marcia L. Latham, Open Court Publishing Company, La Salle, IL.Google Scholar
  12. Descartes, René: 1927, Selections, trans. Ralph M. Eaton, Charles Scribner's Sons, New York.Google Scholar
  13. Dieudonné, Jean: 1992, ‘The Concept of “Rigorous Proof”’, Mathematics-The Music of Reason, Springer-Verlag, Berlin, pp. 235–238.Google Scholar
  14. Enderton, Herbert B.: 1972, A Mathematical Introduction to Logic, Academic Press, San Diego.Google Scholar
  15. Fallis, Don: 1997, ‘The Epistemic Status of Probabilistic Proof’, Journal of Philosophy 94(4), 165–186.Google Scholar
  16. Faltings, Gerd: 1995, ‘The Proof of Fermat's Last Theorem by R. Taylor and A. Wiles’, Notices of the American Mathematical Society 42(7), 743–746.Google Scholar
  17. Frege, Gottlob: 1980, The Foundations of Arithmetic, 2nd edn., trans. J. L. Austin, Northwestern University Press, Evanston, IL.Google Scholar
  18. Gödel, Kurt: 1992, On Formally Undecidable Propositions of Principia Mathematica and Related Systems, trans. B. Meltzer, Dover Publications, New York.Google Scholar
  19. Hadamard, Jacques: 1945, The Psychology of Invention in the Mathematical Field, Princeton University Press, Prentice.Google Scholar
  20. Hardwig, John: 1985, ‘Epistemic Dependence’, Journal of Philosophy 82(7), 335–349.Google Scholar
  21. Harel, David: 1989, The Science of Computing, Addison-Wesley, Reading, MA.Google Scholar
  22. Hersh, Reuben: 1993, ‘Proving Is Convincing and Explaining’, Educational Studies in Mathematics 24(4), 389–399.Google Scholar
  23. Hume, David: 1967, in L. A. Selby-Bigge (ed.), A Treatise of Human Nature, Clarendon Press, Oxford.Google Scholar
  24. Jackson, Allyn: 1994, ‘Update on Proof of Fermat's Last Theorem’, Notices of the American Mathematical Society 41(3), 185–186.Google Scholar
  25. Kershner, R. B.: 1968, ‘On Paving the Plane’, American Mathematical Monthly 75(8), 839–844.Google Scholar
  26. Kitcher, Philip: 1984, The Nature of Mathematical Knowledge, Oxford University Press, New York.Google Scholar
  27. Kitcher, Philip and William Aspray: 1988, ‘An Opinionated Introduction’, in Philip Kitcher and William Aspray (eds.), History and Philosophy of Modern Mathematics, University of Minnesota Press, Minneapolis, pp. 3–57.Google Scholar
  28. Lakatos, Imre: 1976, Proofs and Refutations: The Logic of Mathematical Discovery, Cambridge University Press, New York.Google Scholar
  29. Lehman, Hugh: 1980, ‘An Examination of Imre Lakatos, Philosophy of Mathematics’, The Philosophical Forum 12(1), 33–48.Google Scholar
  30. Mac Lane, Saunders: 1996, ‘Structure in Mathematics’, Philosophia Mathematica (3) 4(2), 174–183.Google Scholar
  31. Maddy, Penelope: 1988, ‘Believing the Axioms’, Journal of Symbolic Logic 53, 481–511, 736-764.Google Scholar
  32. Plato: 1948, Euthyphro, Apology, Crito, trans. F. J. Church and Robert D. Cumming, Liberal Arts Press, New York.Google Scholar
  33. Poincaré, Henri: 1952, Science and Method, trans. Francis Maitland, Dover Publications, New York.Google Scholar
  34. Pólya, George: 1957, How To Solve It, 2nd edn., Princeton University Press, Princeton.Google Scholar
  35. Pólya, George: 1954, Mathematics and Plausible Reasoning, Vol. 1, Princeton University Press, Princeton.Google Scholar
  36. Rabin, M. O.: 1980, ‘Probabilistic Algorithm for Testing Primality’, Journal of Number Theory 12, 128–138.Google Scholar
  37. Reid, Constance: 1986, Hilbert-Courant, Springer-Verlag, New York.Google Scholar
  38. Ribet, Kenneth A.: 1993, ‘Wiles Proves Taniyama's Conjecture; Fermat's Last Theorem Follows’, Notices of the American Mathematical Society 40(6), 575–576.Google Scholar
  39. Schattschneider, Doris: 1981, ‘In Praise of Amateurs’, in Klarner and David A. Belmont (eds.), The Mathematical Gardner, Wadsworth International, Belmont, CA, pp. 140–166.Google Scholar
  40. Shakespeare, William: 1963, The Tragedy of Julius Caesar, Signet Classic. New York.Google Scholar
  41. Shoenfield, Joseph R.: 1967, Mathematical Logic, Addison-Wesley, Reading, MA.Google Scholar
  42. Smale, Steve: 1981, ‘The Fundamental Theorem of Algebra and Complexity Theory’, Bulletin of the American Mathematical Society 4, 1–36.Google Scholar
  43. Steiner, Mark: 1975, Mathematical Knowledge, Cornell University Press, Ithaca, NY.Google Scholar
  44. Stewart, Ian: 1996, From Here to Infinity, Oxford University Press, New York.Google Scholar
  45. Struik, D. J.: 1969, A Source Book in Mathematics, 1200-1800, Harvard University Press, Cambridge, MA.Google Scholar
  46. Tarski, Alfred: 1956, ‘The Concept of Truth in Formalized Languages’, Logic, Semantics, Metamathematics: Papers From 1923 to 1938, trans. J. H. Woodger, Clarendon Press, Oxford.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Don Fallis
    • 1
  1. 1.School of Information ResourcesUniversity of ArizonaTucsonUSA E-mail

Personalised recommendations