Climatic Change

, Volume 57, Issue 1–2, pp 205–225 | Cite as

Impact of Secular Climate Change on the Thermal Structure of a Large Temperate Central European Lake

  • David M. Livingstone


Strong climate-related secular trends are apparent in a 52-yr long (1947–1998) uninterrupted series of monthly temperature profiles fromLake Zurich, a large, deep (136 m), temperate lake on the Swiss Plateau. Decadal mean water temperatures have undergone a secular increase at all depths, reflecting the high degree of regional warming that occurred in the European Alpine area during the 20th century. From the 1950s to the 1990s, high warming rates (∼ 0.24 K per decade) in the uppermost 20 m of the lake (i.e., the epi/metalimnion) combined with lower warming rates (∼ 0.13 K per decade) below 20 m (i.e., in the hypolimnion), have resulted in a20% increase in thermal stability and a consequent extension of 2–3 weeksin the stratification period. In common with many other parts of the world, 20th-century climate change on the Swiss Plateau has involved a steep secular increase in daily minimum (nighttime) air temperatures, but not in daily maximum (daytime) air temperatures. With respect to both secular change and decadal-scale variability, the temporal structure of the temperature of the surface mixed layer of Lake Zurich faithfully reflects that of the regional daily minimum air temperature, but not that of the daily maximum. The processes responsible for longer-term changes in the temperature structure of the lake therefore act during the night, presumably by suppressing nighttime convective cooling of the surface mixed layer. Application of a one-box heat exchange model suggests that the observed secular changes in thermal structure are due to shifts in the nighttime rate of emission of infrared radiation from the atmosphere and in the nighttime rates of latent and sensible heat exchange at the air-water interface. The increase in hypolimnetic temperatures is mainly a result of the increased prevalence of warm winters in Europe.


Thermal Structure Daily Minimum Secular Change Surface Mixed Layer Lower Warming Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ambrosetti, W., and Barbanti, L.: 1999, ‘Deep Water Warming in Lakes: An Indicator of Climatic Change’, J. Limnol. 58, 1–9.Google Scholar
  2. Arnell, N., Bates, B., Lang, H., Magnuson, J. J., and Mulholland, P.: 1996, ‘Hydrology and Freshwater Ecology’, in Watson, R. T., Zinyowera, M. C., Moss, R. H., and Dokken, D. J. (eds.), Climate Change 1995Impacts, Adaptations and Mitigation of Climate Change: Scientific–Technical Analyses. Contribution of Working Group II to the Second Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, pp. 325–363.Google Scholar
  3. Beniston, M., Rebetez, M., Giorgi, F., and Marinucci, M. R.: 1994, ‘An Analysis of Regional Climate Change in Switzerland’, Theor. Appl. Climatol. 49, 135–159.Google Scholar
  4. Brock, T. D.: 1981, ‘Calculating Solar Radiation for Ecological Studies’, Ecol. Modelling 14, 1–19.Google Scholar
  5. Chen, C. T. and Millero, F. J.: 1986, ‘Precise Thermodynamic Properties for NaturalWaters Covering Only the Limnological Range’, Limnol. Oceanogr. 31, 657–662.Google Scholar
  6. Cushing, C. E. (ed.): 1997, ‘Freshwater Ecosystems and Climate Change in North America’, Hydrol. Process. Special Issue 11(8), 817–1067.Google Scholar
  7. Denton, G. H. and Karlén, W.: 1973, ‘Holocene Variations — Their Pattern and Possible Cause’, Quatern. Res. 3, 155–205.Google Scholar
  8. Dingman, S. L.: 1972, ‘Equilibrium Temperature of Water Surfaces as Related to Air Temperature and Solar Radiation’, Water Resour. Res. 8, 42–49.Google Scholar
  9. Edinger, J. E., Duttweiler, D. W., and Geyer, J. C.: 1968, ‘The Response of Water Temperatures to Meteorological Conditions’, Water Resour. Res. 4, 1137–1143.Google Scholar
  10. Gammeter, S., Forster, R., and Zimmermann, U.: 1998, ‘Limnologische Untersuchung des Zürichsees 1972–1996’, Gas Wasser Abwasser, 78, 327–336.Google Scholar
  11. Hondzo, M. and Stefan, H. G.: 1991, ‘Three Case Studies of Lake Temperature and Stratification Response to Warmer Climate’, Water Resour. Res. 27, 1837–1846.Google Scholar
  12. Hondzo, M. and Stefan, H. G.: 1993, ‘Regional Water Temperature Characteristics of Lakes Subjected to Climate Change’, Clim. Change 24, 187–211.Google Scholar
  13. Hormes, A., Schlüchter, C., and Stocker, T. F.: 1998, ‘Minimal Extension Phases of Unteraarglacier (Swiss Alps) during the Holocene Based on C–14 Analysis ofWood’, Radiocarbon 40, 809–817.Google Scholar
  14. Hurrell, J. W.: 1995, ‘Decadal Trends in the North Atlantic Oscillation: Regional Temperatures and Precipitation’, Science 269, 676–679.Google Scholar
  15. Hutchinson, G. E.: 1957, A Treatise on Limnology, Vol. 1: Geography, Physics and Chemistry,Wiley, New York, 1015 pp.Google Scholar
  16. Idso, S. B.: 1973, ‘On the Concept of Lake Stability’, Limnol. Oceanogr. 18, 681–683.Google Scholar
  17. Imberger, J.: 1985, ‘The Diurnal Mixed Layer’, Limnol. Oceanogr. 30, 737–770.Google Scholar
  18. Jones, P. D. and Briffa, K. R.: 1992, ‘Global Surface Air Temperature Variations during the Twentieth Century: Part 1, Spatial, Temporal and Seasonal Details’, Holocene 2, 165–179.Google Scholar
  19. Karl, T. R., Kukla, G., Razuvayev, V. N., Changery, M. J., Quayle, R. G., Heim, R. R. Jr., Easterling, D. R., and Fu, C. B.: 1991, ‘Global Warming: Evidence of Asymmetric Diurnal Temperature Change’, Geophys. Res. Lett. 18, 2253–2256.Google Scholar
  20. Kasten, F. and Czeplak, G.: 1980, ‘Solar and Terrestrial Radiation Dependent on the Amount and Type of Cloud’, Solar Energy 24, 177–189.Google Scholar
  21. Kattenberg, A., Giorgi, F., Grassl, H., Meehl, G. A., Mitchell, J. F. B., Stouffer, R. J., Tokioka, T., Weaver, A. J., and Wigley, T. M. L.: 1996, ‘Climate Models — Projections of Future Climate’, in Houghton, J. J., Meiro Filho, L. G., Callender, B. A., Harris, N., Kattenberg, A., and Maskell, K. (eds.), Climate Change 1995 — the Science of Climate Change. Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, pp. 285–357.Google Scholar
  22. Kukla, G. and Karl, T. R.: 1993, ‘NighttimeWarming and the Greenhouse Effect’, Environ. Sci. Tech. 27, 1468–1474.Google Scholar
  23. Kutschke, I.: 1966, ‘Die thermischen Verhältnisse im Zürichsee zwischen 1937 und 1963 und ihre Beeinflussung durch meteorologische Faktoren’, Vierteljahrsschr. Naturf. Ges. Zürich 111, 47–124.Google Scholar
  24. Lister, G. S., Livingstone, D. M., Ammann, B., Ariztegui, D., Haeberli, W., Lotter, A. F., Ohlendorf, C., Pfister, C., Schwander, J., Schweingruber, F., Stauffer, B., and Sturm, M.: 1998, ‘Alpine Paleoclimatology’, in Cebon, P., Dahinden, U., Davies, H. C., Imboden, D. M., and Jaeger, C. C. (eds.), Views from the Alps: Regional Perspectives on Climate Change, MIT Press, pp. 73–169.Google Scholar
  25. Livingstone, D. M.: 1993, ‘Temporal Structure in the Deep–Water Temperature of Four Swiss Lakes: A Short–Term Climatic Change Indicator?’, Verh. Internat. Verein. Limnol. 25, 75–81.Google Scholar
  26. Livingstone, D. M.: 1997a, ‘Break–Up Dates of Alpine Lakes as Proxy Data for Local and Regional Mean Surface Air Temperatures’, Clim. Change 376, 407–439.Google Scholar
  27. Livingstone, D. M.: 1997b, ‘An Example of the Simultaneous Occurrence of Climate–Driven “Sawtooth” Deep–Water Warming/Cooling Episodes in Several Swiss Lakes’, Verh. Internat. Verein. Limnol. 26, 822–826.Google Scholar
  28. Livingstone, D.M.: 2000, ‘Large–Scale Climatic Forcing Detected in Historical Observations of Lake Ice Break–Up’, Verh. Internat. Verein. Limnol. 27, 2775–2783.Google Scholar
  29. Livingstone, D. M. and Dokulil, M. T.: 2001, ‘Eighty Years of Spatially Coherent Austrian Lake Surface Temperatures and their Relationship to Regional Air Temperature and the North Atlantic Oscillation’, Limnol. Oceanogr. 46, 1220–1227.Google Scholar
  30. Livingstone, D. M. and Imboden, D. M.: 1989, ‘Annual Heat Balance and Equilibrium Temperature of Lake Aegeri, Switzerland’, Aquat. Sci. 51, 351–369.Google Scholar
  31. Livingstone, D. M. and Imboden, D. M.: 1996, ‘The Prediction of Hypolimnetic Oxygen Profiles: A Plea for a Deductive Approach’, Can. J. Aquat. Sci. 53, 924–932.Google Scholar
  32. Livingstone, D. M. and Lotter, A. F.: 1998, ‘The Relationship between Air and Water Temperatures in Lakes of the Swiss Plateau: A Case Study with Palæolimnological Implications’, J. Paleolim. 19, 181–198.Google Scholar
  33. Livingstone, D. M., Lotter, A. F, and Walker, I. R.: 1999, ‘The Decrease in Summer Surface Water Temperature with Altitude in Swiss Alpine Lakes: A Comparison with Air Temperature Lapse Rates’, Arctic Antarctic Alpine Res. 31, 341–352.Google Scholar
  34. Magnuson, J. J., Robertson, D. M., Benson, B. J., Wynne, R. H., Livingstone, D. M., Arai, T., Assel, R. A., Barry, R. G., Card, V., Kuusisto, E., Granin, N. G., Prowse, T. D., Stewart, K. M., and Vuglinski, V. S.: 2000, ‘Historical Trends in Lake and River Ice Cover in the Northern Hemisphere’, Science 289, 1743–1746.Google Scholar
  35. McKnight, D., Brakke, D. F., and Mulholland, P. J. (eds.): 1996, ‘Freshwater Ecosystems and Climate Change in North America’, Limnol. Oceanogr. Special Issue 41(5): 815–1149.Google Scholar
  36. Omlin, M., Reichert, P., and Forster, R.: 2001, ‘Biochemical Model of Lake Zurich: Model Equations and Results’, Ecol. Modelling 144, 77–103.Google Scholar
  37. Örn, C. G.: 1980, ‘Die Sauerstoffverhältnisse im Zürichsee (Untersee) von 1937 bis 1975 und ihre Beeinflussung durch meteorologische Faktoren’, Vierteljahrsschr. Naturf. Ges. Zürich 125, 259–364.Google Scholar
  38. Paeth, H., Hense, A., Glowienk–Hense, R., Voss R., and Cubasch, U.: 1999, ‘The North Atlantic Oscillation as an Indicator for Greenhouse–Gas Induced Regional Climate Change’, Clim. Dyn. 15, 953–960.Google Scholar
  39. Peeters, F., Livingstone, D. M., Goudsmit, G.–H., Kipfer, R., and Forster, R.: 2002, ‘Modeling 50 yr of Historical Temperature Profiles in a Large Central European Lake’, Limnol. Oceanogr. 47, 186–197.Google Scholar
  40. Plantico, M. S., Karl, T. R., Kukla, G., and Gavin, J.: 1990, ‘Is Recent Climate Change across the United States Related to Rising Levels of Anthropogenic Greenhouse Gases?’, J. Geophys. Res. 95, 16 617–16 637.Google Scholar
  41. Rebetez, M. and Beniston, M.: 1998, ‘Changes in Sunshine Duration are Correlated with Changes in Daily Temperature Range this Century: An Analysis of Swiss Climatological Data’, Geophys. Res. Lett. 25, 3611–3613.Google Scholar
  42. Regier, H. A., Holmes, J. A., and Panly, D.: 1990, ‘Influence of Temperature Changes on Aquatic Ecosystems: An Interpretation of Empirical Data’, Trans. Am. Fish. Soc. 119, 374–389.Google Scholar
  43. Robertson, D. M. and Ragotzkie, R. A.: 1990, ‘Changes in the Thermal Structure of Moderate to Large Sized Lakes in Response to Changes in Air Temperature’, Aquatic Sci. 52, 360–380.Google Scholar
  44. Röthlisberger, F., Haas, P., Holzhauser, H., Keller, W., Bircher, W. and Renner, F.: 1980, ‘Holocene Climatic Fluctuations — Radiocarbon Dating of Fossil Soils and Woods from Moraines and Glaciers in the Alps’, Geogr. Helv. 35, 21–52.Google Scholar
  45. Schindler, D. W., Bayley, S. E., Parker, B. R., Beaty, K. G., Cruikshank, D. R., Fee, E. J., Schindler, E. U., and Stainton, M. P.: 1996, ‘The Effects of Climatic Warming on the Properties of Boreal Lakes and Streams at the Experimental Lakes Area, Northwestern Ontario’, Limnol. Oceanogr. 41, 1004–1017.Google Scholar
  46. Schindler, D.W., Beaty, K. G., Fee, E. J., Cruikshank, D. R., DeBruyn, E. R., Findlay, D. L., Linsey, G. A., Shearer, J. A., Stainton, M. P, and Turner, M. A.: 1990, ‘Effects of Climatic Warming on Lakes of the Central Boreal Forest’, Science 250, 967–970.Google Scholar
  47. Schmidt, W.: 1928, ‘Über Temperatur–und Stabilitätsverhältnisse von Seen’, Geogr. Ann. 10, 145–177.Google Scholar
  48. Schüepp, M.: 1968, ‘Klimatologie der Schweiz, C: Lufttemperatur, 5. bis 8. Teil’, Beih. Annal. Schweiz. Meteorol. Zentralanstalt (Jahrgang 1967), C107–C153.Google Scholar
  49. Stefan, H. G., Fang, X., and Hondzo, M.: 1998, ‘Simulated Climate Change Effects on Year–Round Water Temperatures in Temperate Zone Lakes’, Clim. Change 40, 547–576.Google Scholar
  50. Stefan, H. G. and Sinokrot, B. A.: 1993, ‘Projected Global Climate Change Impact on Water Temperatures in Five North Central U.S. Streams’, Clim. Change 24, 353–381.Google Scholar
  51. Sweers, H. H.: 1976, ‘A Nomogram to Estimate the Heat–Exchange Coefficient at the Air–Water Interface as a Function of Wind Speed and Temperature; A Critical Survey of some Literature’, J. Hydrol. 30, 375–401.Google Scholar
  52. Weber, R. O., Talkner, P., and Stefanicki, G.: 1994, ‘Asymmetric Diurnal Temperature Change in the Alpine Region’, Geophys. Res. Lett. 21, 673–676.Google Scholar
  53. Weber, R. O., Talkner, P., Auer, I., Böhm, R., Gajic–Capka, M., Zaninovic, K., Brázdil, R., and Fasko, P.: 1997, ‘20th–Century Changes of Temperature in the Mountain Regions of Central Europe’, Clim. Change 36, 327–344.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • David M. Livingstone
    • 1
  1. 1.Water Resources DepartmentSwiss Federal Institute of Environmental Sciences (EAWAG)DübendorfSwitzerland

Personalised recommendations