Water, Air and Soil Pollution: Focus

, Volume 3, Issue 1, pp 47–66 | Cite as

Chemical and Microbiological Characteristics of Mineral Spoils and Drainage Waters at Abandoned Coal and Metal Mines

  • D. Barrie Johnson


Mining is a long-established human activity. Abandonedmines, tailings, and mine spoils may have considerable impacton neighboring environments long after the sites are abandoned. Of greatest concern are derelict mines and wastes that generateacidic discharge waters that are enriched with iron and othermetals and metalloids. The chemistry and microbiology of thesesites are intricately intertwined. Whilst some indigenousmicroorganisms are responsible for accelerating sulfide mineraloxidation, thereby generating acidity and mobilizing metals,others catalyze reductive processes that essentially reversethese reactions and thereby ameliorate polluted mine waters.This article reviews current knowledge on the chemistry and microbiology of abandoned coal and metal mines, mine spoils and tailings.

acid pollution acidophiles biodiversity metal pollution mine wastes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Banks, D., Younger, P. L., Arnesen, R.-T., Iversen, E. R. and Banks, S. B.: 1997, 'Mine-water chemistry: The good, the bad and the ugly', Environ. Geol. 32, 157–174.Google Scholar
  2. Belly, R. T. and Brock, T. D.: 1974, 'Ecology of iron-oxidizing bacteria in pyritic materials associated with coal', J. Bacteriol. 117, 726–732.Google Scholar
  3. Berthelot, D., Leduc, L. G. and Ferroni, G. D.: 1997, 'Iron-oxidizing autotrophs and acidophilic heterotrophs from uranium mine environments', Geomicrobiol. J. 14, 317–324.Google Scholar
  4. Bond, P. L., Druschel, G. K. and Banfield, J. F.: 2000, 'Comparison of acid mine drainage communities in physically and geochemically distinct ecosystems', Appl. Environ. Microbiol. 66, 4962–4971.Google Scholar
  5. Bos, P., Boogerd, F. C. and Kuenen, J. G.: 1992, 'Microbial Desulfurization of Coal', in R. M. Mitchell (ed.), Environmental Microbiology, Wiley-Liss, New York, U.S.A., pp. 375–403.Google Scholar
  6. Bridge, T. A. M. and Johnson, D. B.: 1998, 'Reduction of soluble iron and reductive dissolution of ferric iron-containing minerals by moderately thermophilic iron-oxidizing bacteria', Appl. Environ. Microbiol. 64, 2181–2186.Google Scholar
  7. Bridge, T. A. M. and Johnson, D. B.: 2000, 'Reductive dissolution of ferric iron minerals by Acidiphilium SJH', Geomicrobiol. J. 17, 193–206.Google Scholar
  8. Clarke, L. B.: 1995, Coal Mining and Water Quality, IEA Coal Research, London, 99 pp.Google Scholar
  9. Darland, G., Brock, T. D., Samsonoff, W. and Conti, S. F.: 1970, 'A thermophilic, acidophilic mycoplasma isolated from a coal refuse pile', Science 170, 1416–1418.Google Scholar
  10. Dennison, F. D., Sen, A. M., Hallberg, K. B. and Johnson, D. B.: 2001, 'Biological versus Abiotic Oxidation of Iron in AcidMine DrainageWaters: An Important Role forModerately Acidophilic, Iron-oxidising Bacteria', in V. S. T. Ciminelli and O. Garcia Jr. (eds), Biohydrometallurgy: Fundamentals, Technology and Sustainable Development, International Biohydrometallurgy Symposium Proceedings. Process Metallurgy 11B, Elsevier, Amsterdam, pp. 493–501.Google Scholar
  11. Dopson, M. and Lindstrom, E. B.: 1999, 'Potential role of Thiobacillus caldus in arsenopyrite leaching', Appl. Environ. Microbiol. 65, 36–40.Google Scholar
  12. Edwards, K. J., Gihring, T. M. and Banfield, J. F.: 1999, 'Seasonal variations in microbial populations and environmental conditions in an extreme acid mine drainage environment, Appl. Environ. Microbiol. 65, 3627–3632.Google Scholar
  13. Ferguson, K. D. and Erickson, P. M.: 1988, 'Pre-mine Prediction of Acid Mine Drainage', in W. Solomons and U. Forstner (eds), Environmental Management of Solid Wastes, Springer-Verlag, Berlin, Germany, pp. 24–43.Google Scholar
  14. Fortin, D. and Beveridge, T. J.: 1997, 'Microbial sulfate reduction within sulfidic mine tailings: Formation of diagenetic Fe sulfides', Geomicrobiol. J. 14, 1–21.Google Scholar
  15. Fowler, T. A., Holmes, P. R. and Crundwell, F. K.: 2001, 'On the kinetics and mechanism of the dissolution of pyrite in the presence of Thiobacillus ferrooxidans', Hydrometall. 59, 257–270.Google Scholar
  16. Goebel, B. M. and Stackebrandt, E.: 1994, 'Cultural and phylogenetic analysis of mixed microbial populations found in natural and commercial bioleaching environments', Appl. Environ. Microbiol. 60, 1614–1621.Google Scholar
  17. Grimalt, J. O. and Macpherson, E.: 1999, 'The environmental impact of the mine tailings accident in Aznalcollar (south-west Spain)', Sci. Tot. Environ. 242, 1–323.Google Scholar
  18. Hallberg, K. B. and Johnson, D. B.: 2001a, 'Biodiversity of acidophilic prokaryotes', Adv. Appl. Microbiol. 49, 37–84.Google Scholar
  19. Hallberg, K. B. and Johnson, D. B.: 2001b, 'Novel Acidophiles Isolated from a Constructed Wetland Receiving Acid Mine Drainage', in V. S. T. Ciminelli and O. Garcia Jr. (eds), Biohydrometallurgy: Fundamentals, Technology and Sustainable Development. International Biohydrometallurgy Symposium Proceedings. Process Metallurgy 11B, Elsevier, Amsterdam, pp. 433–441.Google Scholar
  20. Hedin, R. S., Nairn, R.W. and Kleinmann, R. L. P.: 1994, Passive Treatment of Coal Mine Drainage, U.S. Bureau of Mines Information Circular IC-9389, U.S. Bureau of Mines, Pittsburgh, PA, U.S.A., 35 pp.Google Scholar
  21. Jenkins, D. A., Johnson, D. B. and Freeman, C.: 2000, 'Mynydd Parys Copper/Lead/Zinc Mines: Mineralogy, Microbiology and Acid Mine Drainage', in J. D. Cotter-Howells, L. S. Campbell, E. Valsami-Jones and M. Batchelder (eds), Environmental Mineralogy: Microbial Interactions, Anthropogenic Influences, Contaminated Land and Waste Management, The Mineralogical Society of Great Britain and Ireland, London, U.K., pp. 161–179.Google Scholar
  22. Johnson, D. B.: 1998a, 'Biodiversity and ecology of acidophilic microorganisms', FEMS Microbiol. Ecol. 27, 307–317.Google Scholar
  23. Johnson, D. B.: 1998b, 'Biological Abatement of Acid Mine Drainage: The Role of Acidophilic Protozoa and Other Indigenous Microflora', in W. Geller, H. Klapper and W. Solomons (eds), Acidic Mining Lakes: Acid Mine Drainage, Limnology and Reclamation, Springer-Verlag, Berlin, Germany, pp. 285–302.Google Scholar
  24. Johnson, D. B.: 2000, 'Biological Removal of Sulfurous Compounds from Inorganic Wastewaters', in P. Lens and L. Hulshoff Pol (eds), Environmental Technologies to Treat Sulfur Pollution: Principles and Engineering, International Association on Water Quality, London, U.K., pp. 175–206.Google Scholar
  25. Johnson, D. B. and Bridge, T. A. M.: 1997, 'The Role of Microbial Dissimilatory Reduction Processes in the Bioremediation of Metal-rich, Acidic Drainage Waters', in H. Verachtert and W. Verstraete (eds), Environmental Biotechnology: Part 1. Proceedings of the International Symposium, Oostende, Belgium, Technologisch Instituut, Belgium, pp. 183–186.Google Scholar
  26. Johnson, D. B. and Bridge, T. A. M.: 2002, 'Reduction of ferric iron by acidophilic heterotrophic bacteria: Evidence for constitutive and inducible enzyme systems in Acidiphilium spp.', J. Appl. Microbiol. 92, 315–321.Google Scholar
  27. Johnson, D. B., Rolfe, S., Hallberg, K. B. and Iversen, E.: 2001, 'Isolation and phylogenetic characterisation of acidophilic microorganisms indigenous to acidic drainage waters at an abandoned Norwegian copper mine', Environ. Microbiol. 3, 630–637.Google Scholar
  28. Kelly, D. P. and Wood, A. P.: 2000, 'Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov., and Thermothiobacillus gen. nov.' Int. J. System. Evol. Microbiol. 50, 511–516.Google Scholar
  29. Langdahl, B. R. and Ingvorsen, K.: 1997, 'Temperature characteristics of bacterial iron solubilisation and 14C assimilation in naturally exposed sulfide ore material at Citronen Fjord, Greenland (83°N)', FEMS Microbiol. Ecol. 23, 275–283.Google Scholar
  30. McGinness, S. and Johnson, D. B.: 1993, 'Seasonal variations in the microbiology and chemistry of an acid mine drainage stream', Sci. Tot. Environ. 132, 27–41.Google Scholar
  31. Miller, C. L., Landa, E. R. and Updegraff, D. M.: 1987, 'Ecological aspects of microorganisms inhabiting uranium mine tailings', Microbiol. Ecol. 14, 141–155.Google Scholar
  32. Nordstrom, D. K.: 2000, 'Advances in the hydrogeochemistry and microbiology of acid mine waters', Int. Geol. Rev. 42, 499–515.Google Scholar
  33. Nordstrom, D. K., Alpers, C. N., Ptacek, C. J. and Blowes, D.W.: 2000, 'Negative pH and extremely acidic minewaters from Iron Mountain, California', Environ. Sci. Technol. 34, 254–258.Google Scholar
  34. Norris, P. R. and Owen, J. P.: 1992, 'Strain Selection for High Temperature Oxidation of Mineral Sulphides in Reactors', in M. R. Landisch and A. Bose (eds), Harnessing Biotechnology for the 21st Century: Proceedings of the 9th International Biotechnology Symposium, American Chemical Society, Washington, D.C., U.S.A., pp. 445–448.Google Scholar
  35. Pichtel, J. R. and Dick, W. A.: 1991, 'Sulfur, iron and solid phase transformations during the biological oxidation of pyritic mine spoil', Soil Biol. Biochem. 23, 101–107.Google Scholar
  36. Pietsch, W.: 1998, 'Colonization and Development of Vegetation in Mining Lakes of the Lusatian Lignite Area in Dependence on Water Genesis', in W. Geller, H. Klapper and W. Solomoms (eds), Acidic Mining Lakes: Acid Mine Drainage, Limnology and Reclamation, Springer-Verlag, Berlin, Germany, pp. 285-302.Google Scholar
  37. Rawlings, D. E. (ed.): 1997, Biomining: Theory, Microbes and Industrial Processes. Springer-Verlag/Landes Bioscience, Georgetown, Texas, U.S.A., 302 pp.Google Scholar
  38. Rawlings, D. E. and Johnson, D. B.: 2002, 'Ecology and Biodiversity of Extremely Acidophilic Microorganisms', in C. Gerday (ed.), Encyclopedia of Life Support Systems, United Nations Educational, Scientific and Cultural Organisation (in press).Google Scholar
  39. Sen, A. M.: 2001, 'Acidophilic Sulfate Reducing Bacteria: Candidates for Bioremediation of Acid Mine Drainage Pollution', Ph.D. Thesis, School of Biological Sciences, Bangor, University of Wales, 298 pp.Google Scholar
  40. Schippers, A. and Sand, W.: 1999, 'Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur', Appl. Environ. Microbiol. 65, 319–321.Google Scholar
  41. Schippers, A., Hallmann, R., Wentzien, S. and Sand, W.: 1995, 'Microbial diversity in uranium mine waste heaps', Appl. Environ. Microbiol. 61, 2930–2935.Google Scholar
  42. Southam, G. and Beveridge, T. J.: 1992, 'Enumeration of thiobacilli within pH-neutral and acidic mine tailings and their role in the development of secondary mineral soil', Appl. Environ. Microbiol. 58, 1904–1912.Google Scholar
  43. Sullivan, P. J. and Yelton, J. L.: 1988, 'An evaluation of trace element release associated with acid mine drainage', Environ. Geol. Water Sci. 12, 181–186.Google Scholar
  44. Walton, K. C. and Johnson, D. B.: 1992, 'Microbiological and chemical characteristics of an acidic stream draining a disused copper mine', Environ. Pollut. 76, 169–175.Google Scholar
  45. White III, W. W. and Jeffers, T. H.: 1994, 'Chemical Predictive Modeling of Acid Mine Drainage from Metallic Sulfide-bearing Waste Rock', in C. N. Alpers and D. W. Blowes (eds), Environmental Geochemistry of Sulfide Oxidation, Symposium Series 550, American Chemical Society, Washington D.C., U.S.A., pp. 608–630Google Scholar
  46. Wielinga, B., Lucy, J. K., Moore, J. N., Seastone, O. F. and Gannon, J. E.: 1999, 'Microbiological and geochemical characterization of fluvially deposited sulfidic mine tailings', Appl. Environ. Microbiol. 65, 1548–1555.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • D. Barrie Johnson
    • 1
  1. 1.School of Biological SciencesUniversity of WalesBangorU.K. (author for correspondence

Personalised recommendations