Advertisement

Journal of Mathematical Sciences

, Volume 114, Issue 3, pp 1227–1344 | Cite as

Optimal Chattering Feedback Control

  • M. I. Zelikin
  • V. F. Borisov
Article

Keywords

Feedback Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    V. I. Arnol'd, Mathematical Methods of Classical Mechanics[in Russian ], Nauka, Moscow (1989).Google Scholar
  2. 2.
    V. I. Arnol'd, Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, New York (1988).Google Scholar
  3. 3.
    V. F. B risov and M. I. Zelikin, “Modes with switchings f increasing frequency in the problem of controlling a robot,” Prikl. Mat. Mekh., 52, No. 6, 934–946 (1988).Google Scholar
  4. 4.
    M. Z. Borshchevskij and I. V. Ioslovich, “The problem f the ptimum rapid braking f an axisym-metric solid rotating around its center of mass,” Prikl. Mat. Mekh., 49, No. 1, 35–42 (1985).Google Scholar
  5. 5.
    J. V. Breakwell and J. F. Dix n, “Minimum-fuel rocket trajectories inv lving intermediate thrust arcs,” J. Optimiz. Theory Appl., 17, No. 5, 465–479 (1975).Google Scholar
  6. 6.
    V. V. Dikussar and A. A. Milyutin, Qualitative and Numerical Methods in the Maximum Principle[in Russian ], Nauka, Moscow (1989).Google Scholar
  7. 7.
    V. V. Dikussar, A. A. Milyutin, and S. V. Chukanov, Necessary Conditions in optimal Control[in Russian], Nauka, Moscow (1990).Google Scholar
  8. 8.
    A. F. Filippov, Differential Equations with Discontinuous Right-Hand Sides[in Russian ], Nauka, Moscow (1985).Google Scholar
  9. 9.
    A. T. Fuller, “Relay control systems optimized for various performance criteria,” In: Proc. First World Congress IFAC, Moscow, 1960, Butterworths, London (1961), pp. 510–519.Google Scholar
  10. 10.
    A. T. Fuller, “Further study of an optimum nonlinear control system,” J. Electr. Control, 17, No. 3, 283–301 (1964).Google Scholar
  11. 11.
    A. T. Fuller, “Absolute optimality of nonlinear control systems with integral-square err r criterion,” J. Electr. Control, 17, No. 3, 301–317 (1964).Google Scholar
  12. 12.
    P. Hartman, Ordinary Differential Equations, J. Wiley & Sons, New York–London–Sydney (1964).Google Scholar
  13. 13.
    M. W. Hirsh, C. C. Pugh, and M. Shub, Invariant Manifolds, Springer-Verlag, Berlin (1977).Google Scholar
  14. 14.
    H. J. Kelley, R. E. Kopp, and M. G. Moyer, “Singular extremals,” In: Topics in Optimization, Academic Press, New York (1967), pp. 63–101.Google Scholar
  15. 15.
    A. I. Kostrikin and Yu. I. Manin, Linear Algebra and Geometry[in Russian ], Moscow Univ., Moscow (1980).Google Scholar
  16. 16.
    I. Kupka, “The ubiquity of Fuller's phenomenon,” In: Nonlinear Controllability and optimal Control(H. Sussman, Ed. ), Dekker, New York (1990), pp. 313–350.Google Scholar
  17. 17.
    I. Kupka, “Geometric theory of extremals in optimal control problems: The foldand Maxwell case,” Trans. Amer. Mat. Soc., 299, No. 1, 225–243 (1987).Google Scholar
  18. 18.
    G. G. Magaril-Il'yaev, “Kolmogorov 's inequalities on the half-line,” Vestn. Mosk. Univ. Ser. Mat., Mekh., No. 5, 33–41 (1976).Google Scholar
  19. 19.
    L. A. Manita, “The behaviour of extremals in the neighbourhood of singular regimes and nonsmooth Lyapunov functions in optimal control problems,” Fundam. Prikl. Mat., 2, No. 2, 411–447 (1996).Google Scholar
  20. 20.
    C. Marchal, “Chattering arcs and chattering controls,” J. Optimiz. Theory Appl., 11, No. 5, 441–448 (1973).Google Scholar
  21. 21.
    M. V. Meerov, A. V. Akhmetzyanov, Ya. M. Bershchanskii, et al., Multiconnected Control Systems[in Russian ], Nauka, Moscow (1990).Google Scholar
  22. 22.
    J. Milnor, Morse Theory, Princeton Univ. Press, Princeton (1963).Google Scholar
  23. 23.
    A. A. Milyutin, “An example f an optimal control problem whose extremals possess a continual set of discontinuities of the control function,” Zh. Mat. Fiz., 1, No. 3, 397–402 (1993).Google Scholar
  24. 24.
    A. A. Milyutin, “On the equation ø (4) = ? sign ø,” In: Optimization of Control Dynamical Systems, Vol. 1 [in Russian ], Moscow (1990), pp. 76–84.Google Scholar
  25. 25.
    A. A. Milyutin, A. E. Ilyutovich, N. P. Osmolovskii, and S. V. Chukanov, Optimal Control in Linear Systems[in Russian ], Nauka, Moscow (1993).Google Scholar
  26. 26.
    A. A. Milyutin and S. V. Chukanov, “Qualitative study of singularities for extremals of the quadratic optimal control problems,” Zh. Mat. Fiz., 2, No. 1, 31–48 (1994).Google Scholar
  27. 27.
    Z. Nitecki, Differentiable Dynamics, Cambridge (1971).Google Scholar
  28. 28.
    S. N. Osipov and A. M. Formal 'skii, “A problem on rapid rotation of a manipulator,” Prikl. Mat. Mekh., 52, No. 6, 929–933 (1988).Google Scholar
  29. 29.
    L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenk, The Mathematical Theory of optimal Processes, Wiley (1962).Google Scholar
  30. 30.
    E. P. Ryan, “Time-optimal feedback control laws for a certain third-order relay control system,” Int. J. Contr., 20, No. 6, 881–913 (1974).Google Scholar
  31. 31.
    S. Sternberg, Lectures on Differential Geometry, Prentice-Hall, Englewood Cliffs (1964).Google Scholar
  32. 32.
    Ya. V. Tatarinov, Lectures on Theoretical Dynamics[in Russian ], Moscow (1984).Google Scholar
  33. 33.
    V. R. Telesnin, “On optimization of transient distortions,” Dokl. Akad. Nauk SSSR, 253, No. 5, 1055–1059 (1980).Google Scholar
  34. 34.
    V. R. Telesnin, “On a problem of optimization of transient processes,” Tr. Inst. Mat. Akad. Nauk SSSR, 166, 235–244 (1984).Google Scholar
  35. 35.
    I. O. Vashkov, “Time-optimal problems to infinity,” Vestn. Mosk. Univ. Ser. Mat., Mekh., No. 1, 36–40 (1990).Google Scholar
  36. 36.
    L. C. Young, Lectures on the Calculus of Variations and optimal Control Theory, W. B. Saunders, Philadelphia–London–Toronto (1969).Google Scholar
  37. 37.
    M. I. Zelikin, “Irregularity of optimal control in regular extremal problems,” Fundam. Prikl. Mat., 1, No. 2, 399–408 (1995).Google Scholar
  38. 38.
    M. I. Zelikin, “Optimal control of rigid-body rotation,” Dokl. Ross. Akad. Nauk, 346, No. 3, 334–336 (1996).Google Scholar
  39. 39.
    M. I. Zelikin, “The Fuller phenomenon in problems f vibration of two linked oscillators,” J. Math. Sci., 78, No. 5, 626–631 (1996).Google Scholar
  40. 40.
    M. I. Zelikin, “One-parameter families of solutions to a class of PDE optimal control problems,” Contemp. Math, 209, pp. 339–349 (1997).Google Scholar
  41. 41.
    M. I. Zelikin, “Optimal synthesis containing sequential chattering bundles,” Tr. Inst. Mat. Ross. Akad. Nauk, 224, 152–164 (1999).Google Scholar
  42. 42.
    M. I. Zelikin, “Synthesis of optimal trajectories determining the Reeb foliation,” Tr. Inst. Mat. Ross. Akad. Nauk, 233, 89–94 (2001).Google Scholar
  43. 43.
    M. I. Zelikin and V. F. Borisov, “Fields f optimal trajectories containing singular second-order extremals and extremals with frequent switchings,” Dokl. Akad. Nauk SSSR, 304, No. 5, 1050–1053 (1989).Google Scholar
  44. 44.
    M. I. Zelikin and V. F. Borisov, “Synthesis in optimal control problems containing trajectories with increasing switching frequency and second-order singular trajectories,” Mat. Zametki, 47, No. 1, 62–73 (1990).Google Scholar
  45. 45.
    M. I. Zelikin and V. F. Borisov, “Regimes with increasing switching frequency in optimal control problems,” Tr. Inst. Mat. Ross. Akad. Nauk, 197, 85–167 (1991).Google Scholar
  46. 46.
    M. I. Zelikin and V. F. Borisov, “Optimal synthesis containing chattering arcs and singular extremals of secondorder,” In: Prog. Syst. Control Theory, Vol. 9 (1991), pp. 283–296.Google Scholar
  47. 47.
    M. I. Zelikin and V. F. Borisov, Theory of Chattering Control with Applications to Astronautics, Robotics, Economics, and Engineering, Birkhäuser, Boston (1994).Google Scholar
  48. 48.
    M. I. Zelikin and V. F. Borisov, “Chattering in Lawden 's problem of space navigation,” In: Proc. Int. Aerospace Congress, Moscow (1994), p. 448.Google Scholar
  49. 49.
    M. I. Zelikin, N. B. Mel'nikiov, and R. Hildebrandt, “Topological structure of the phase portrait of a typical layer in optimal synthesis for problems with switching accumulation,” Tr. Inst. Mat. Ross. Akad. Nauk, 233, 125–152 (2001).Google Scholar
  50. 50.
    L. F. Zelikina, “Universal manif lds and turnpike theorems f r a class f optimal control problems,” Dokl. Akad. Nauk SSSR, 224, 31–34 (1975).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • M. I. Zelikin
  • V. F. Borisov

There are no affiliations available

Personalised recommendations