Advertisement

Meccanica

, Volume 38, Issue 1, pp 43–59 | Cite as

Nonlinear Dynamic Behaviour of Coupled Suspension Systems

  • Jenny Jerrelind
  • Annika Stensson
Article

Abstract

A two degrees of freedom model of two coupled suspension systems characterised by piecewise linear stiffness has been studied. The system, representing a pantograph current collector head, is shown to be sensitive to changes in excitation and system parameters, possessing chaotic, periodic and quasiperiodic behaviour. The coupled system has a more irregular behaviour with larger motions than the uncoupled suspension system, indicating that the response from the uncoupled suspension system cannot be used as a worst case measure. Since small changes in system parameters and excitation affect the results drastically then wear and mounting as well as actual operating conditions are crucial factors for the system behaviour.

Pantograph current collector head Coupled suspensions Impact Nonlinear dynamic behaviour 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jerrelind, J. and Stensson, A., ‘Nonlinear dynamics of parts in engineering systems’, Chaos Solitons Fract. 11(15) (2000) 2413-2428.Google Scholar
  2. 2.
    Awrejcewicz, J., Bifurcations and Chaos in Coupled Oscillators, World Scientific, Singapore, 1991.Google Scholar
  3. 3.
    Heagy, J.F., Caroll, T.L. and Pecora, L.M., ‘Experimental and numerical evidence for riddling basins in coupled chaotic systems’, Phys. Rev. Lett. 73(26) (1994) 3528-3531.Google Scholar
  4. 4.
    Blazejczyk-Okolewska, B., ‘Study of the impact oscillator with elastic coupling of masses’, Chaos Solitons Fract. 11(15) (2000) 2487-2492.Google Scholar
  5. 5.
    Blazejczyk-Okolewska, B., Brindley, J. and Kapitaniak, T., ‘Practical riddling in mechanical systems’, Chaos Solitons Fract. 11(15) (2000) 2511-2514.Google Scholar
  6. 6.
    Yamada, T. and Fujisaka, H., ‘Stability theory of synchronized motion in coupled-oscillator systems. II’, Prog. Theor. Phys. 70(5) (1983) 1240-1247.Google Scholar
  7. 7.
    Aidanpää, J.-O. and Gupta, R.B., ‘Periodic and chaotic behaviour of a threshold-limited two-degree-of-freedom system’, J. Sound Vib. 165(2) (1993) 305-307.Google Scholar
  8. 8.
    Bishop, S.R., ‘Impact oscillators’, Phil. Trans. R. Soc. Lond. Ser. A 347(1683) (1994) 347-351.Google Scholar
  9. 9.
    Shaw, S.W. and Holmes, P.J., ‘A periodically forced piecewise linear oscillator’, J. Sound Vib. 90(1) (1983) 129-155.Google Scholar
  10. 10.
    Wiercigroch, M. and Sin, V.W.T., ‘Experimental study of a symmetrical piecewise base-excited oscillator’, J. Appl. Mech. 65(3) (1998) 657-663.Google Scholar
  11. 11.
    Wiercigroch, M., ‘Chaotic vibration of a simple model of the machine tool-cutting process system’, J. Vib. Acoust. 119(3) (1997) 468-475.Google Scholar
  12. 12.
    Wiercigroch, M., ‘Modelling of dynamical systems with motion dependent discontinuities’, Chaos Solitons Fract. 11 (2000) 2429-2442.Google Scholar
  13. 13.
    Stensson, A., Asplund, C. and Karlsson, L., ‘The nonlinear behaviour of a Macpherson strut wheel suspension’ Vehicle Syst. Dyn. 23 (1994) 85-106.Google Scholar
  14. 14.
    Stensson, A., Berghuvud, A. and Bergman, E., ‘Main suspension dynamics in a three-piece bogie’, in: Proceedings of the 16th IAVSD Symposium, Dynamics of Vehicles on Roads and Tracks, August 30–September 3, Pretoria, South Africa, 1999.Google Scholar
  15. 15.
    Drugge, L., Larsson, T., Berghuvud, A. and Stensson A., ‘The nonlinear behaviour of a pantograph current collector suspension’, in: ASME Design Engineering Technical Conferences, DETC99/VIB-8026, 1999.Google Scholar
  16. 16.
    Yagi, T., Stensson, A. and Hardell, C., ‘Simulation and visualisation of the dynamic behaviour of an overhead power system with contact breaking’, Vehicle Syst. Dyn. 25 (1996) 31-49.Google Scholar
  17. 17.
    Pfeiffer, F. and Glocker, C., Multibody Dynamics with Unilateral Contacts, Wiley, New York, 1996.Google Scholar
  18. 18.
    MATLAB is a registered trademark of The Math Works Inc., 24 Prime Park Way, Natick, MA 01760-1500, USA.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Jenny Jerrelind
    • 1
  • Annika Stensson
    • 1
  1. 1.Division of Vehicle DynamicsRoyal Institute of TechnologyStockholmSweden

Personalised recommendations