Environmental Fluid Mechanics

, Volume 3, Issue 2, pp 145–172 | Cite as

The Modelling of Turbulence from Traffic in Urban Dispersion Models — Part II: Evaluation Against Laboratory and Full-Scale Concentration Measurements in Street Canyons

  • Petra Kastner-Klein
  • Evgeni Fedorovich
  • Matthias Ketzel
  • Ruwim Berkowicz
  • Rex Britter


The paper addresses the problem of the parameterisation of traffic induced turbulent motion in urban dispersion models. Results from a variety of full-scale and wind-tunnel studies are analysed and interpreted within a modelling framework based on scaling considerations. The combined effects of traffic and wind induced dispersive motions are quantified for different traffic situations (variable traffic densities, vehicle velocities and vehicle types) and incorporated into the developed parameterisations. A new dispersive velocity scale is formulated and recommendations regarding its application in urban dispersion models are given. The necessity of accounting for traffic induced air motions in predictions of street-canyon pollution levels is demonstrated. Further research is needed to verify the empirical constants in the proposed parameterisations and to generalize the developed approach for a broader range of urban building configurations, meteorological conditions, and traffic situations.

street-canyon ventilation traffic pollution traffic-produced turbulence urban air quality modelling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kastner-Klein, P., Fedorovich, E. and Rotach, M.W.: 2001, A wind tunnel study of organised and turbulent air motions in urban street canyons, J. Wind Eng. Ind. Aerodyn. 89, 849–861.Google Scholar
  2. 2.
    DePaul, F.T. and Sheih, C.M.: 1986, Measurements of wind velocities in a street canyon.Atmos. Environ. 20, 455–459.Google Scholar
  3. 3.
    Berkowicz, R., Ketzel, M., Vachon, G., Louka, P., Rosant, J-M., Mestayer, P.G. and Sini, JF.: 2002, Examination of traffic pollution distribution in a street canyon using the Nantes'99 experimental data and comparison with model results, Int. J. Water Air Soil Poll(accepted).Google Scholar
  4. 4.
    Ketzel, M., Berkowicz, R., Flassak, T., Lohmeyer, A. and Kastner-Klein, P.: 2001, Adaptation of results from CFD-models and wind tunnels for practical traffic pollution modelling. In: Proceedings of Seventh International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, 28–31 May, 2001, Belgirate, Italy (online available at: Scholar
  5. 5.
    Di Sabatino, S., Kastner-Klein, P., Berkowicz, R., Britter, R.E. and Fedorovich E.: 2003, The modelling of turbulence from traffic in urban dispersion models-Part I: Theoretical considerations, Environ. Fluid. Mech. 3, 129–143.Google Scholar
  6. 6.
    Schatzmann, M, Frantz, H., Grawe, D., Leitl, B. and Mueller, W.J.:2001, Do field data represent the truth? In: Proceedings of the Third International Conference on Urban Air Quality, 19–23 March 2001, Loutraki, Greece.Google Scholar
  7. 7.
    Ketzel, M., Berkowicz, R., Müller, W.J. and Lohmeyer, A.: 2002, Dependence of street canyon concentrations on above roof wind speed-implications for numerical modeling, Int. J. Environ. Poll. 17, 356–366.Google Scholar
  8. 8.
    Kastner-Klein, P., Berkowicz, R. and Fedorovich, E.: 2001, Evaluation of scaling concepts for traffic-produced turbulence based on laboratory and full-scale concentration measurements in street canyons, In: Proceedings of the Third International Conference on Urban Air Quality, 19–23 March 2001, Loutraki, Greece.Google Scholar
  9. 9.
    Kastner-Klein, P.: 1999, Experimentelle Untersuchung der strömungsmechanischen Transportvorgänge in Straßenschluchten. Doctor Thesis, Dissertationsreihe am Institut für Hydromechanik der Universität Karlsruhe, ISSN 1439–4111, Heft 1999/2.Google Scholar
  10. 10.
    Kastner-Klein, P., Berkowicz, R. and Plate, E. J.: 2000, Modelling of vehicle induced turbulence in air pollution studies for streets, Int. J. Environ. Poll. 14, 496–507.Google Scholar
  11. 11.
    Kastner-Klein, P., Fedorovich, E., Sini, J.-F. and Mestayer, P.G.: 2000, Experimental and numerical verification of similarity concept for diffusion of car exhaust gases in urban street canyons, J. Environ. Monitor. Assess. 65, 353–361.Google Scholar
  12. 12.
    NLÖ: 1993, Lufthygienisches Ñberwachungssystem Niedersachsen-Luftschadstoffbelastungen in Straßenschluchten. Niedersächsisches Landesamt für ökologie, Ed., Hannover, Germany, ISSN 0945–4187.Google Scholar
  13. 13.
    Schatzmann, M., Leitl, B. and Liedtke, J.: 1999, Ausbreitung von Kfz-Abgasen in Straßenschluchten, FZKA-BWPLUS Report PEF 2 96 001, online available at http://bwplus.fzk.deGoogle Scholar
  14. 14.
    Schädler, G., Bächlin, W., Lohmeyer, A. and van Wees, T.: 1996, Vergleich und Bewertung derzeit verfügbarer mikroskaliger Strömungs-und Ausbreitungsmodelle. Berichte Umweltforschung Baden-Württemberg, PEF 2 93 001 (FZKA-PEF 138), ISSN: 0948–535X.Google Scholar
  15. 15.
    NERI: 1998, The Danish Air Quality Monitoring Programme, Annual Report for 1997, National Environmental Research Institute, Roskilde, Denmark, NERI Technical Report No. 245. ISSN 0905–815X.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Petra Kastner-Klein
    • 1
    • 2
  • Evgeni Fedorovich
    • 1
    • 3
  • Matthias Ketzel
    • 4
  • Ruwim Berkowicz
    • 4
  • Rex Britter
    • 5
  1. 1.School of MeteorologyUniversity of OklahomaNormanU.S.A
  2. 2.Institute for Atmospheric and Climate Science ETHSwiss Federal Institute of TechnologyZurichSwitzerland
  3. 3.Institute for HydromechanicsUniversity of KarlsruheKarlsruheGermany
  4. 4.Department of Atmospheric EnvironmentNational Environmental Research InstituteRoskildeDenmark
  5. 5.Department of EngineeringUniversity of CambridgeCambridgeU.K

Personalised recommendations