Advertisement

Meccanica

, Volume 38, Issue 1, pp 85–97 | Cite as

Modelling of Ground Moling Dynamics by an Impact Oscillator with a Frictional Slider

  • Ekaterina Pavlovskaia
  • Marian Wiercigroch
  • Ko-Choong Woo
  • Albert A. Rodger
Article

Abstract

This paper describes current research into the mathematical modelling of a vibro-impact ground moling system. Due to the structural complexity of such systems, in the first instance the dynamic response of an idealised impact oscillator is investigated. The model is comprised of an harmonically excited mass simulating the penetrating part of the mole and a visco-elastic slider, which represents the soil resistance. The model has been mathematically formulated and the equations of motion have been developed. A typical nonlinear dynamic analysis reveals a complex behaviour ranging from periodic to chaotic motion. It was found out that the maximum progression coincides with the end of the periodic regime.

Ground moling Impact oscillator Friction Nonlinear dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barkan, D.D., Dynamics of Bases and Foundations, McGraw-Hill, New York, 1962.Google Scholar
  2. 2.
    Fairweather, N.M., An Investigation of the Driving Mechanism of the Vibrohammer, PhD Thesis, University of Aberdeen, 1984.Google Scholar
  3. 3.
    Galvanetto, U. and Bishop, S.R., ‘Stick-slip vibrations of a 2-degree-of-freedom geophysical fault model’, Int. J. Mech. Sci. 36 (1994) 683.Google Scholar
  4. 4.
    Krivtsov, A.M. and Wiercigroch, M., ‘Dry friction model of percussive drilling’, Meccanica 34 (1999) 425.Google Scholar
  5. 5.
    Krivtsov, A.M. and Wiercigroch, M., ‘Penetration rate prediction for percussive drilling via dry friction model’, Chaos Solitons Fract. 11 (2000) 2479.Google Scholar
  6. 6.
    Lok, H.P., Neilson, R.D. and Rodger, A.A., ‘Computer-based model of vibro-impact driving’, in: Proceedings of ASME DETC: Symposium on Nonlinear Dynamics in Engineering Systems, Las Vegas, 1999.Google Scholar
  7. 7.
    Natsiavas, S., ‘Periodic response and stability of oscillators with trilinear restoring force’, J. Sound Vibr. 134 (1989) 315.Google Scholar
  8. 8.
    Neilson, R.D., Rodger, A.A. and Stevenson, R.G., ‘Development of a computer based model of vibro-impact driving’, Mach. Vibr. 3 (1995) 164.Google Scholar
  9. 9.
    Pavlovskaia, E., Wiercigroch, M. and Grebogi, C., ‘Modelling of an impact system with a drift’, Phys. Rev. E 64 (2001) 056224.Google Scholar
  10. 10.
    Pavlyuk, N.P., Bull. Leningrad Struct. Inst. 15 (1931).Google Scholar
  11. 11.
    Preobrazhenskaya, N.A., ‘Experimental investigations of vibration sinking of piles and channels’, in: Dinamika Gruntov, Gosstroizdat, 27, 1955.Google Scholar
  12. 12.
    Preobrazhenskaya, N.A. and Savchenko, I.A., ‘On the influence of vibrations on the resistance of clayey soils to shear’, in: Dinamika Gruntov, Gosstroizdat 32, 1958.Google Scholar
  13. 13.
    Rodger, A.A. and Littlejohn, G.S., ‘A study of vibratory driving in granular soils’, Geotechnique 30 (1980) 269.Google Scholar
  14. 14.
    Savchenko, I.-A., ‘Influence of vibrations on the internal friction of sands’, in: Dinamika Gruntov, Gosstroizdat, 32, 1958.Google Scholar
  15. 15.
    Shaw, S.W. and Holmes, P.J., ‘A periodically forced piecewise linear oscillator’, J. Sound Vibr. 90 (1983) 129.Google Scholar
  16. 16.
    Spektor, M., ‘Principles of soil-tool interaction’, J. Terramech. 18 (1981) 51.Google Scholar
  17. 17.
    Tsaplin, S., ‘Vibratory impact mechanisms for road and bridge construction’, Autotranzidat, 1953 (translated by the National Engineering Laboratory).Google Scholar
  18. 18.
    Watanabe, T., ‘Forced vibration of continuous system with nonlinear boundary conditions’, J. Mech. Des. 100 (1978) 487.Google Scholar
  19. 19.
    Wiercigroch, M., ‘A note on the switch function for the stick-slip phenomenon’, J. Sound Vibr. 175 (1994) 700.Google Scholar
  20. 20.
    Wiercigroch, M. and Sin, V.T.W., ‘Experimental study of base excited symmetrically piecewise linear oscillator’, ASME J. Appl. Mech. 65(3) (1998) 657.Google Scholar
  21. 21.
    Wiercigroch, M., Krivtsov, A. and Wojewoda, J., in: Wiercigroch, M. and de Kraker, B. (eds), Nonlinear Dynamics and Chaos of Mechanical Systems with Discontinuities, Chap. 16, World Scientific, Singapore, 2000.Google Scholar
  22. 22.
    Woo, K.-C., Rodger, A.A., Neilson, R.D. and Wiercigroch, M., ‘Application of the harmonic balance method to ground moling machines operating in periodic regimes’, Chaos, Solitons Fract. 11(15) (2000) 2515.Google Scholar
  23. 23.
    Yorke, J.A. and Nusse, H.E., Dynamics, Springer, New York, 1998.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Ekaterina Pavlovskaia
    • 1
  • Marian Wiercigroch
    • 1
  • Ko-Choong Woo
    • 1
  • Albert A. Rodger
    • 1
  1. 1.Centre for Applied Dynamics Research, Department of EngineeringUniversity of AberdeenAberdeenScotland, U.K

Personalised recommendations