Advertisement

Thermal properties of thermoplastic starch/synthetic polymer blends with potential biomedical applicability

  • J. F. Mano
  • D. Koniarova
  • R. L. Reis
Article

Abstract

Previous studies shown that thermoplastic blends of corn starch with some biodegradable synthetic polymers (poly(ε-caprolactone), cellulose acetate, poly(lactic acid) and ethylene-vinyl alcohol copolymer) have good potential to be used in a series of biomedical applications. In this work the thermal behavior of these structurally complex materials is investigated by differential scanning calorimetry (DSC) and by thermogravimetric analysis (TGA). In addition, Fourier-transform infrared (FTIR) spectroscopy was used to investigate the chemical interactions between the different components. The endothermic gelatinization process (or water evaporation) observed by DSC in starch is also observed in the blends. Special attention was paid to the structural relaxation that can occur in the blends with poly(lactic acid) at body temperature that may change the physical properties of the material during its application as a biomaterial. At least three degradation mechanisms were identified in the blends by means of using TGA, being assigned to the mass loss due to the plasticizer leaching, and to the degradation of the starch and the synthetic polymer fractions. The non-isothermal kinetics of the decomposition processes was analyzed using two different integral methods. The analysis included the calculation of the activation energy of the correspondent reactions.

Keywords

Starch Differential Scanning Calorimetry Lactic Acid Leaching Thermogravimetric Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    “Starch Chemistry and Technology,” 2nd edn, edited by R. L. Whistler, J. N. Bemiller, E. F. Paschall (Academic Press, New York, 1984).Google Scholar
  2. 2.
    A. H. Khalil, Food Chem. 68 (2000) 61; J. S. Peanasky, J. M. Long and R. P. Wool, J. Polym. Sci.: Polym. Phys. 29 (1991) 565.Google Scholar
  3. 3.
    F. H. Otey, A. M. Mark, C. L. Mehltretter and C. R. Russel, Ind. Eng. Chem. Prod. Res. Des. 13 (1974) 90.Google Scholar
  4. 4.
    G. F. Fanta, R. C. Burr, W. C. Doane and C. R. Russel, Starch/Starke 30 (1978) 237.Google Scholar
  5. 5.
    E. B. Bagfey, G. R. Fanta, R. C. Burr, W. C. Doane and C. R. Russel, Polym. Eng. Sci. 17 (1977) 311.Google Scholar
  6. 6.
    R. G. Patil and G. R. Fanta, Starch/Starke 46 (1994) 142.Google Scholar
  7. 7.
    G. J. L. Griffin, Adv. Chem. Ser. 134 (1974) 159.Google Scholar
  8. 8.
    E. R. George, T. M. Sullivan and E. H. Park, Polym. Eng. Sci. 34 (1994) 17.Google Scholar
  9. 9.
    G. F. Fanta, C. L. Swanson and R. L. Shogren, J. Appl. Polym. Sci. 44 (1992) 2037.Google Scholar
  10. 10.
    C. L. Swanson, R. L. Shogren, G. F. Fanta and S. H. Imam, J. Environ. Polym. Degrad. 1 (1993) 155.Google Scholar
  11. 11.
    M. F. Koenig and S. J. Huang, Polymer 36 (1995) 1877.Google Scholar
  12. 12.
    R. S. Lenk, ibid. 21 (1981) 371.Google Scholar
  13. 13.
    Z. Yang, M. Bhattacharya and U. R. Vaidya, ibid. 37 (1996) 2137.Google Scholar
  14. 14.
    Y. Tokiwa, A. Iwamoto and M. Koyama, Polym. Mat. Sci. Eng 63 (1990) 742.Google Scholar
  15. 15.
    D. Raghavan and A. Emekalam, Polym. Degr. Stab. 72 (2001) 509.Google Scholar
  16. 16.
    R. L. Reis and A. M. Cunha, in “Encyclopedia of Materials: Science and Technology” (Elsevier Science Ltd, 2001) p. 8810.Google Scholar
  17. 17.
    M. E. Gomes, A. S. Ribeiro, P. B. Malafaya, R. L. Reis and A. M. Cunha, Biomaterials 22 (2001) 883.Google Scholar
  18. 18.
    R. L. Reis and A. M. Cunha, Journal of Applied Medical Polymers 4 (2000) 1.Google Scholar
  19. 19.
    R. A. Sousa, J. F. Mano, R. L. Reis, A. M. Cunha and M. J. Bevis, Polym. Eng. Sci. 42 (2002) 1032.Google Scholar
  20. 20.
    P. B. Malafaya, C. Elvira, A. Gallardo, J. San Román and R. L. Reis, J. Biomater. Sci.: Polym. Ed. 12 (2001) 1227.Google Scholar
  21. 21.
    C. Elvira, J. F. Mano, J. San Román and R. L. Reis, Biomaterials 23 (2002) 1955.Google Scholar
  22. 22.
    I. Espigares, C. Elvira, J. F. Mano, B. Vasquez, J. San Roman and R. L. Reis, ibid. 23 (2002) 1883.Google Scholar
  23. 23.
    D. Demirgöz, C. Elvira, J. F. Mano, A. M. Cunha, E. Piskin and R. L. Reis, Polym. Degrad. Stability 70 (2000) 161.Google Scholar
  24. 24.
    C. M. Vaz, A. M. Cunha and R. L. Reis, Materials Research Innovations 4 (2001) 375.Google Scholar
  25. 25.
    S. C. Mendes, Y. P. Bovell, R. L. Reis, A. M. Cunha, J. D. De Bruijn and C. A. Van Blitterswijk, Biomaterials 22 (2001) 2057.Google Scholar
  26. 26.
    M. E. Gomes, R. L. Reis, A. M. Cunha, C. A. Blitterswijk and J. D. De Bruijn, ibid. 22 (2001) 1911.Google Scholar
  27. 27.
    I. B. Leonor, A. Ito, K. Onuma, N. Kanzaki and R. L. Reis, ibid. (2002), in press.Google Scholar
  28. 28.
    I. B. Leonor, R. A. Sousa, A. M. Cunha, Z. Zhong, D. Greenspan and R. L. Reis, J. Mater. Sci.: Mater. Medicine 13 (2002) 1.Google Scholar
  29. 29.
    D. K. Kweon, D. S. Cha, H. J. Park, S. T. Lim, J. Appl. Polym. Sci. 78 (2000) 986.Google Scholar
  30. 30.
    T. Tikuisis, D. E. Axelson and A. Sharma, Polym. Eng. Sci. 33 (1993) 26.Google Scholar
  31. 31.
    J. W. Park, S. S. Im, S. H. Kim and Y. H. Kim, Polym. Eng. Sci. 40 (2000) 2539.Google Scholar
  32. 32.
    A. A. Hanna, A. H. Basta, H. El-Saied and I. F. Abadir, Die Angewandte Makromolekulare Chemie 260 (1998) 1.Google Scholar
  33. 33.
    F. S. Sousa, A. P. G. Barreto and R. O. Macêdo, J. Therm. Anal. Cal. 64 (2001) 739.Google Scholar
  34. 34.
    S. J. Huang, M. F. Koenig and M. Huang, in “Biodegradable Polymers and Packaging,” edited by C. Ching, D. L. Kglum and E. L. Thomas (Technomic Lancaster, PA, 1993), pp. 97-110.Google Scholar
  35. 35.
    M. Day, J. D. Cooney, K. Shaw, J. Watts, J. Therm. Anal. 52 (1998) 261.Google Scholar
  36. 36.
    See, for example, U. W. Gedde, “Polymer Physics” (Chapman & Hall, London, 1995), Ch. 5.Google Scholar
  37. 37.
    K. Liao, D. Quan and Z. Lu, Eur. Polym. J. 38 (2002) 157.Google Scholar
  38. 38.
    S. Jacobsen and H. G. Fritz, Polym. Eng. Sci. 36 (1996) 2799.Google Scholar
  39. 39.
    N. M. Alves, J. F. Mano, E. Balaguer, J. M. Meseguer Dueñas and J. L. Gómez Ribelles, Polymer 43 (2002) 4111.Google Scholar
  40. 40.
    T. Hatakeyama and F. X. Quinn, “Thermal analysis, Fundamentals and Applications to Polymer Science” (John Wiley & Sons, Chichester, 1994).Google Scholar
  41. 41.
    D. Vega, M. A. Villar, M. D. Failla, E. M. Vallés, Polym. Bull. 37 (1996) 229.Google Scholar
  42. 42.
    P. Aggarwal and D. Dollimore, Thermoch. Acta. 291 (1997) 65.Google Scholar
  43. 43.
    X. Zhang, J. Golding and I. Burgar, Proceedings of the 7th World Conference on Biodegradable Polymers & Plastics, Pisa, Italy, June 4–8, (2002) p. 131.Google Scholar
  44. 44.
    A. Broido, J. Polym. Sci.: A-2, 7 (1969) 1761.Google Scholar
  45. 45.
    A. A. Soliman, N. A. El-Shinnawy and F. Mobarak, Thermoch. Acta 296 (1997) 149.Google Scholar
  46. 46.
    H. H. Horowitz and G. Metzger, Anal. Chem. 35 (1963) 1465.Google Scholar
  47. 47.
    X. Qu, A. Wirsén, A.-C. Albertsson, Polymer 41 (2000) 4841.Google Scholar
  48. 48.
    R. V. Rao, P. V. Ashokan and M. H. Shridhar, Polym. Degrad. Stabil. 70 (2000) 11.Google Scholar
  49. 49.
    J. F. Mano, R. L. Reis and A. M. Cunha, “Dynamic Mechanical Analysis in Polymers for Medical Applications,” to appear in the Nato Science Series, Polymer Based Systems on Tissue Engineering, Replacement and Regeneration (Kluwer Academic Publishers, 2002).Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • J. F. Mano
    • 1
    • 2
  • D. Koniarova
    • 1
    • 2
  • R. L. Reis
    • 1
    • 2
  1. 1.Department of Polymer EngineeringUniversity of Minho, Campus de AzurémGuimarãesPortugal
  2. 2.3B's Research GroupBiomaterials, Biodegradables and Biomimetics, University of Minho, Campus de GualtarBragaPortugal

Personalised recommendations