Neurochemical Research

, Volume 22, Issue 12, pp 1443–1447

Manganese Decreases Glutamate Uptake in Cultured Astrocytes

  • Alan S. Hazell
  • Michael D. Norenberg


Recent data have shown an accumulation of manganese in the basal ganglia in patients with chronic hepatic encephalopathy (HE). Astrocytes and ammonia are critically involved in the pathogenesis of HE, and we have recently demonstrated that ammonia decreases glutamate uptake in cultured astrocytes. Since failure by astrocytes to take up glutamate may represent an important pathogenetic mechanism in HE, we, therefore, examined the effect of manganese on glutamate transport in these cells. Treatment of cultured astrocytes with 100 μM manganese for 2 days resulted in a 54% decrease in the uptake of D-aspartate, a nonmetabolizable analogue of glutamate. Kinetic analysis revealed a 28% decline in Vmax, with no change in the Km. Treatment of cultures with 5 mM NH4Cl inhibited D-aspartate uptake by 21%, and a combination of 5 mM NH4Cl with 100 μM manganese produced an additive effect on uptake inhibition. These results suggest a pathogenetic role for manganese in HE, possibly involving glutamate transport.

Manganese glutamate transport ammonia hepatic encephalopathy astrocyte 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kulisevsky, J., Pujol, J., Junque, C., Deus, J., Balanzo, J., and Capdevila, A. 1993. MRI pallidal hyperintensity and brain atrophy in cirrhotic patients: two different MRI patterns of clinical deterioration? Neurology 43:2570–2573.Google Scholar
  2. 2.
    Inoue, E., Hori, S., Narumi, Y., Fujita, M., Kuriyama, K., Kadota, T., and Kuroda, C.H. 1991. Portal-systemic encephalopathy: presence of basal ganglia lesions with high signal intensity on MRI images. Radiology 179:551–555.Google Scholar
  3. 3.
    Hauser, R. A., Zefiewicz, T., and Olanow, C. W. 1994. Manganese overload may cause the clinical and magnetic resonance imaging abnormalities of chronic liver disease. Movement Disorders 9(Suppl. 1): 118.Google Scholar
  4. 4.
    Nelson, K., Golnick, J., Korn, T., and Angle, C. 1993. Manganese encephalopathy: utility of early magnetic resonance imaging. Br. J. Ind. Med. 50:510–513Google Scholar
  5. 5.
    Mirowitz, S. A., and Westrich, T. J. 1992. Basal ganglia signal intensity alterations: reversal after discontinuation of parenteral manganese administration. Radiology 185:535–536.Google Scholar
  6. 6.
    Newland, M. C., Ceckler, T. L., Kordower, J. H., and Weiss, B. 1989. Visualizing manganese in the primate basal ganglia with magnetic resonance imaging. Exp. Neurol. 106:251–258.Google Scholar
  7. 7.
    Pomier Layrargues, G., Spahr, L., and Butterworth, R. F. 1995. Increased manganese concentrations in pallidum of cirrhotic patients. Lancet 345:735.Google Scholar
  8. 8.
    Krieger, D., Krieger, S., Jansen, O., Gass, P., Theilmann, L., and Lichtnecker, H. 1995. Manganese and chronic hepatic encephalopathy. Lancet 346:270–274.Google Scholar
  9. 9.
    Norenberg, M. D., Neary, J. T., Bender, A. S., and Dombro, R. S. 1992. Hepatic encephalopathy: a disorder in glial-neuronal communication. Prog. Brain Res. 94:261–269.Google Scholar
  10. 10.
    Norenberg, M. D. 1996. Astrocytic-ammonia interactions in hepatic encephalopathy. Semin. Liver Dis. 16:245–253.Google Scholar
  11. 11.
    Adams, R. D., and Foley, J. M. 1953. The neurological disorder associated with liver disease. Pages 198–237, in Merritt, H. H., and Hare, C. C. (eds.), Metabolic and Toxic Diseases of the Nervous System, Williams and Wilkins, Baltimore.Google Scholar
  12. 12.
    Norenberg, M. D. 1981. The astrocyte in liver disease. Adv. Cell. Neurobiol. 2:303.Google Scholar
  13. 13.
    Pentschew, A., Ebner, F. F., and Kovatch, R. M. 1963. Experimental manganese encephalopathy in monkeys: a preliminary report. J. Neuropathol. Exp. Neurol. 22:488–499.Google Scholar
  14. 14.
    Tholey, G., Ledig, M., Mandel, P., Sargentini, L., Frivold, A. H., Leroy, M., Grippo, A. A., and Wedler, F. C. 1987. Concentrations of physiologically important metal ions in glial cells cultured from chick cerebral cortex. Neurochem. Res. 12:45–50.Google Scholar
  15. 15.
    Wedler, F. C., Ley, B. W., and Grippo, A. A. 1989. Manganese(II) dynamics and distribution in glial cells cultured from chick cerebral cortex. Neurochem. Res. 14:1129–1135.Google Scholar
  16. 16.
    Wedler, F. C., Denman, R. B., and Roby, W. G. 1982. Glutamine synthetase from ovine brain is a manganese(II) enzyme. Biochemistry 21:6389–6396.Google Scholar
  17. 17.
    Schousboe, A., Drejer, J., and Hertz, L. 1988. Uptake and release of glutamate and glutamine in neurons and astrocytes in primary cultures. Pages 21–39, in Kvamme, E. (ed.), Glutamine and Glutamate in Mammals, Vol. II, CRC Press, Boca Raton.Google Scholar
  18. 18.
    Moroni, F., Lombardi, G., Monetti, G., and Cortesini, C. 1983. The release and neosynthesis of glutamic acid are increased in experimental models of hepatic encephalopathy. J. Neurochem. 40:850–854.Google Scholar
  19. 19.
    Tossman, U., Delin, A., Eriksson, S., and Ungerstedt, U. 1987. Brain cortical amino acids measured by intracerebral dialysis in portacaval shunted rats. Neurochem. Res. 12:265–269.Google Scholar
  20. 20.
    De Knegt, R. J., Schalm, S. W., van der Rijt, C. C. D., Fekkes, D., Dalm, E., and Hekking-Weyma, I. 1994. Extracellular brain glutamate during acute liver failure and during acute hyperammonemia simulating acute liver failure: an experimental study based on in vivo brain dialysis. J. Hepatol. 20:17–26.Google Scholar
  21. 21.
    Bender, A. S., and Norenberg, M. D. 1996. Effects of ammonia on L-glutamate uptake in cultured astrocytes. Neurochem. Res. 21:567–573.Google Scholar
  22. 22.
    Huo, Z., Neary, J. T., Petito, C. K., and Norenberg, M. D. 1995. The glutamate transporter GLT-1 is downregulated in hyperammonemia and acute liver failure. Soc. Neurosci. Absts. 21:1081.Google Scholar
  23. 23.
    Norenberg, M. D., Huo, Z., Neary, J. T., and Roig-Cantesano, A. 1997. The glial glutamate transporter in hyperammonemia and hepatic encephalopathy: relation to energy metabolism and glutamatergic neurotransmission. Glia. In press.Google Scholar
  24. 24.
    Hazell, A. S., and Norenberg, M. D. 1995. Manganese decreases glutamate uptake in cultured astrocytes. Soc. Neurosci. Abst. 21: 1984.Google Scholar
  25. 25.
    Booher, J., and Sensenbrenner, M. 1972. Growth and cultivation of dissociated neurons and glial cells from embryonic chick, rat, and human brain in flask cultures. Neurobiol. 2:97–105.Google Scholar
  26. 26.
    Drejer, J., Larsson, O. M., and Schousboe, A. 1982. Characterization of L-glutamate uptake into and release from astrocytes and neurons cultured from different brain regions. Exp. Brain Res. 47: 259–269.Google Scholar
  27. 27.
    Bender, A. S., Woodbury, D. M., and White, H. S. 1989. β-DL-Methylene-aspartate, an inhibitor of aspartate aminotransferase, potently inhibits L-glutamate uptake into astrocytes. Neurochem. Res. 14:641–646.Google Scholar
  28. 28.
    Drejer, J., Larsson, O. M., and Schousboe, A. 1983. Characterization of uptake and release processes for D-and L-aspartate in primary cultures of astrocytes and cerebellar granule cells. Neurochem. Res. 8:231–243.Google Scholar
  29. 29.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:263–275.Google Scholar
  30. 30.
    Ohashi, M., Amano, S., Hazama, F., and Handa, J. 1993. Hypoxic effects on glutamate uptake in cultured glial cells. Acta Pathol. Japon. 43, 154–159.Google Scholar
  31. 31.
    Lowry, O. H., and Passonneau, J. V. 1972. A Flexible System of Enzymatic Analysis, Academic Press, New York.Google Scholar
  32. 32.
    Wroblewski, F., and LaDue, J. S. 1955. Lactic dehydrogenase activity in blood. Proc. Soc. Exp. Biol. Med. 90:210–213.Google Scholar
  33. 33.
    Aschner, M., Gannon, M., and Kimelberg, H. K. 1992. Manganese uptake and efflux in cultured rat astrocytes. J. Neurochem. 58: 730–735.Google Scholar
  34. 34.
    Aschner, M., Eberle, N. B., Miller, K., and Kimelberg, H. K. 1990. Interactions of methylmercury with rat primary astrocyte cultures: inhibition of rubidium and glutamate uptake and induction of swelling. Brain Res. 530:245–250.Google Scholar
  35. 35.
    Defazio, G., Soleo, L., Zefferino, R., and Livrea, P. 1996. Manganese toxicity in serumless dissociated mesencephalic and striatal primary culture. Brain Res. Bulletin 40:257–262.Google Scholar
  36. 36.
    Sakurai, H., Nishida, M., Yoshimura, T., Takada, J., and Koyama, M. 1985. Partition of divalent and total manganese in organs and subcellular organelles of MnCl2-treated rats studied by ESR and neutron activation analysis. Biochim. Biophys. Acta 841:208–214.Google Scholar
  37. 37.
    Rao, V. L. R., and Murthy, Ch. R. K. 1991. Hyperammonemic alterations in the uptake and release of glutamate and aspartate by rat cerebellar preparations. Neurosci. Lett. 130:49–52.Google Scholar
  38. 38.
    Gregorios, J. B., Mozes, L. W., Norenberg, L. O. B., and Norenberg, M. D. 1986. Morphologic effects of ammonia on primary astrocyte cultures: I. Light microscopic studies. J. Neuropath. Exp. Neurol. 44:397–403.Google Scholar
  39. 39.
    Gregorios, J. B., Mozes, L. W., and Norenberg, M. D. 1986. Morphologic effects of ammonia on primary astrocyte cultures: II. Electron microscopic studies. J. Neuropath. Exp. Neurol. 44: 404–414.Google Scholar
  40. 40.
    Wagner, R., Rosenberg, M., and Estensen, R. 1971. Endocytosis of Chang liver cells. Quantitation by sucrose-3H uptake and inhibition by cytochalasin B. J. Cell Biol. 50:804–817.Google Scholar
  41. 41.
    Silverstein, S. C., Steinman, R. M., and Cohn, Z. A. 1977. Endocytosis. Ann. Rev. Biochem. 46:669–722.Google Scholar
  42. 42.
    Sun, A. Y., Yang, W. L., and Kim, H. D. 1993. Free radical and lipid peroxidation in manganese-induced neuronal cell injury. Ann. N.Y. Acad. Sci. 679:358–363.Google Scholar
  43. 43.
    Desole, M. S., Esposito, G., Migheli, R., Fresu, L., Sircana, S., Miele, M., De Natale, G., and Miele, E. 1995. Allopurinol protects against manganese-induced oxidative stress in the striatum and in the brainstem of the rat. Neurosci. Lett. 192:73–76.Google Scholar
  44. 44.
    Hexum, T. D., and Fried, R. 1979. Effects of superoxide radicals on transport (Na + K) adenosine triphosphatase and protection by superoxide dismutase. Neurochem. Res. 4:73–82.Google Scholar
  45. 45.
    Piani, D., Frei, K., Pfister, H.-W., and Fontana, A. 1993. Glutamate uptake by astrocytes is inhibited by reactive oxygen intermediates but not by other macrophage-derived molecules including cytokines, leukotrienes or platelet-activating factor. J. Neuroimmunol. 48:99–104.Google Scholar
  46. 46.
    Volterra, A., Trotti, D., Tromba, C., Floridi, S., and Racagni, G. 1994. Glutamate uptake inhibition by oxygen free radicals in rat cortical astrocytes. J. Neurosci. 14:2924–2932.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Alan S. Hazell
    • 1
    • 2
  • Michael D. Norenberg
    • 1
    • 2
    • 3
  1. 1.Laboratory of NeuropathologyVeterans Administration Medical CenterMiami
  2. 2.Department of PathologyUniversity of Miami School of MedicineMiami
  3. 3.Department of Biochemistry & Molecular BiologyUniversity of Miami School of MedicineMiami

Personalised recommendations