# Geometric Integration of Ordinary Differential Equations on Manifolds

Article

- 260 Downloads
- 24 Citations

## Abstract

This article illustrates how classical integration methods for differential equations on manifolds can be modified in order to preserve certain geometric properties of the exact flow. Projection methods as well as integrators based on local coordinates are considered. The central ideas of this article have been presented at the 40th anniversary meeting of the journal BIT.

Geometric integration differential equations on manifolds symmetric methods projection methods methods based on local coordinates

## Preview

Unable to display preview. Download preview PDF.

## REFERENCES

- H. C. Andersen,
*Rattle: A “velocity” version of the Shake algorithm for molecular dynamics calculations*, J. Comput. Phys., 52 (1983), pp. 24–34.Google Scholar - U. M. Ascher, H. Chin, and S. Reich,
*Stabilization of DAEs and invariant manifolds*, Numer. Math., 67 (1994) pp. 131–149.Google Scholar - U. M. Ascher and S. Reich,
*On some difficulties in integrating highly oscillatory Hamiltonian systems*, Lecture Notes in Computational Science and Engineering, 4 (1998), pp. 281–296.Google Scholar - J. Baumgarte,
*Stabilization of constraints and integrals of motion in dynamical systems*, Comput. Methods Appl. Mech. Engrg., 1 (1972), pp. 11–16.Google Scholar - K. E. Brenan, S. L. Campbell and L. R. Petzold,
*Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations*, North Holland, New York, 1989.Google Scholar - P. E. Crouch and R. Grossman,
*Numerical integration of ordinary differential equations on manifolds*, J. Nonlinear Sci., 3 (1993), pp. 1–33.Google Scholar - F. Diele, L. Lopez, and R. Peluso,
*The Cayley transform in the numerical solution of unitary differential systems*, Adv. Comput. Math., 8 (1998), pp. 317–334.Google Scholar - E. Eich-Soellner and C. Führer,
*Numerical Methods in Multibody Dynamics*, Teubner, Stuttgart, 1998.Google Scholar - C. W. Gear,
*Simultaneous numerical solution of differential-algebraic equations*, IEEE Trans. Circuit Theory, CT-18 (1971), pp. 89–95.Google Scholar - E. Griepentrog and R. März:
*Differential-algebraic equations and their numerical treatment*, Teubner Texte zur Math., Vol. 88, Teubner, Stuttgart, 1986.Google Scholar - E. Hairer,
*Numerical Geometric Integration*, Unpublished Lecture Notes, March 1999, available on http://www.unige.ch/math/folks/hairer/.Google Scholar - E. Hairer,
*Symmetric projection methods for differential equations on manifolds*, BIT, 40:4 (2000), pp. 726–734.Google Scholar - E. Hairer, Ch. Lubich, and M. Roche,
*The Numerical Solution of Differential-Algebraic Systems by Runge-Kutta Methods*, Lecture Notes in Mathematics, Vol. 1409, Springer-Verlag, Berlin, 1989.Google Scholar - E. Hairer, Ch. Lubich, and G. Wanner,
*Geometric Numerical Integration*, monograph in preparation.Google Scholar - E. Hairer and G. Wanner,
*Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems*, 2nd ed., Springer Series in Comput. Math., Vol. 14, Springer-Verlag, Berlin, 1996.Google Scholar - A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett, and A. Zanna,
*Lie-group methods*, Acta Numerica, 9 (2000), pp. 215–365.Google Scholar - L. Jay,
*Symplectic partitioned Runge-Kutta methods for constrained Hamiltonian systems*, SIAM J. Numer. Anal., 33 (1996), pp. 368–387.Google Scholar - B. J. Leimkuhler and R. D. Skeel,
*Symplectic numerical integrators in constrained Hamiltonian systems*, J. Comput. Phys., 112 (1994), pp. 117–125.Google Scholar - H. Munthe-Kaas,
*High order Runge-Kutta methods on manifolds*, Appl. Numer. Math., 29 (1999), pp. 115–127.Google Scholar - F. A. Potra and W. C. Rheinboldt,
*On the numerical solution of Euler-Lagrange equations*, Mech. Struct. Mech., 19 (1991), pp. 1–18.Google Scholar - S. Reich,
*Symplectic integration of constrained Hamiltonian systems by composition methods*, SIAM J. Numer. Anal., 33 (1996), pp. 475–491.Google Scholar - W. C. Rheinboldt,
*Differential-algebraic systems as differential equations on manifolds*, Math. Comp., 43 (1984), pp. 473–482.Google Scholar - J.-P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen,
*Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes*, J. Comput. Phys., 23 (1977), pp. 327–341.Google Scholar - L. F. Shampine,
*Conservation laws and the numerical solution of ODEs*, Comput. Maths. Appls., 12B (1986) pp. 1287–1296.Google Scholar - R. A. Wehage and E. J. Haug,
*Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems*, J. Mechanical Design, 104 (1982), pp. 247–255.Google Scholar - A. Zanna, K. Engø, and H. Munthe-Kaas,
*Adjoint and selfadjoint Lie-group methods*, BIT, 41:2 (2001), pp. 395–421.Google Scholar

## Copyright information

© Swets & Zeitlinger 2001