Bulletin of Experimental Biology and Medicine

, Volume 134, Issue 4, pp 329–332 | Cite as

Adaptation to Stress Improves Resistance to Gastric Damage during Acute Stress in Wistar Rats and Decreases Resistance in August Rats: Role of Serotonin

  • M. G. Pshennikova
  • E. V. Popkova
  • M. V. Shimkovich


In August rats more resistant to acute stress-induced gastric damage than Wistar rats, preadaptation to nondamaging stress exposure did not prevent damage and even potentiated these damages. By contrast, in Wistar rats such adaptation decreased gastric damage caused by acute stress. Higher initial resistance of August rats to stress damage was associated with higher serotonin level and lower norepinephrine/serotonin ratio in the gastric mucosa than in Wistar rats. The negative effect of adaptation in August rats was associated with decreased serotonin level and increased norepinephrine/serotonin ratio in the stomach during stress. In Wistar rats exposed to stress the protective effect of adaptation was associated with an increase of serotonin content and a decrease of the norepinephrine/serotonin ratio in the stomach. Hence, the degree of resistance to stress-induced gastric damage can be due to genetically determined serotonin level and norepinephrine/serotonin ratio in the stomach.

August rats Wistar rats stress adaptation gastric ulcer norepinephrine serotonin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. V. Anichkov, I. S. Zavodskaya, E. V. Moreva, et al., Neurogenic Dystrophies and Drug Therapy Thereof [in Russian], Leningrad (1969).Google Scholar
  2. 2.
    O. N. Bondarenko, N. A. Bondarenko, and E. B. Manukhina, Byull. Eksp. Biol. Med., 128,No. 8, 157–160 (1999).Google Scholar
  3. 3.
    T. L. Virabyan, Monoaminergic Component in Mechanisms of Antiulcerative Effect of Neurotropic Agents, Abstract of Doct. Med. Sci. Dissertation, Erevan (1982).Google Scholar
  4. 4.
    M. O. Klimenko, V. I. Lupal'tsov, A. I. Yakhnyuk, et al., Fiziol. Zh. (Ukr.), 46,No. 4, 52–57 (2000).Google Scholar
  5. 5.
    L. A. Koryakina, Ros. Fiziol. Zh., 79,No. 9, 54–60 (1993).Google Scholar
  6. 6.
    L. A. Koryakina, Ibid., 80,No. 11, 64–70 (1994).Google Scholar
  7. 7.
    M. G. Pshennikova, N. A. Bondarenko, M. V. Shimkovich, et al., Byull. Eksp. Biol. Med., 128,No. 12, 638–641 (1999).Google Scholar
  8. 8.
    M. G. Pshennikova, N. A. Bondarenko, and M. V. Shimkovich, Ibid., 132,No. 11, 510–513 (2001).Google Scholar
  9. 9.
    M. G. Pshennikova, E. V. Popkova, N. A. Bondarenko, et al., Ros. Fiziol. Zh., 88,No. 4, 485–495 (2002).Google Scholar
  10. 10.
    M. G. Pshennikova, B. V. Smirin, O. N. Bondarenko, et al., Ibid., 86,No. 2, 174–181 (2000).Google Scholar
  11. 11.
    G. Ciurzynska, J. Dzierzkowska, and S. Maslinski, J. Physiol. Pharmacol., 45,No. 4, 517–532 (1994).Google Scholar
  12. 12.
    H. Goldman and C. Rosoff, Am. J. Pathol., 52, 227–243 (1968).Google Scholar
  13. 13.
    N. Ito, M. Kodama, Y. Ogawa, et al., Hiroshima J. Med. Sci., 32,No. 3, 329–339 (1983).Google Scholar
  14. 14.
    G. Orlicz-Szczesna, M. Zabel, and J. Jaroszewski, Z. Mikrosk. Anat. Forsch., 103,No. 3, 504–514 (1989).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • M. G. Pshennikova
    • 1
  • E. V. Popkova
    • 1
  • M. V. Shimkovich
    • 1
  1. 1.MoscowRussian Academy of Medical Sciences

Personalised recommendations