BIT Numerical Mathematics

, Volume 42, Issue 1, pp 110–118 | Cite as

Computation of Bessel and Airy Functions and of Related Gaussian Quadrature Formulae

  • Walter Gautschi

Abstract

Procedures are described for the high-precision calculation of the modified Bessel function Kν(x), 0 < ν < 1, and the Airy function Ai(x), for positive arguments x, as pre-requisites for generating Gaussian quadrature rules having these functions as weight function.

Modified Bessel function Airy function Gaussian quadrature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, NBS Applied Mathematics Series, Vol. 55, U.S. Government Printing Office, Washington, DC, 1964.Google Scholar
  2. 2.
    W. Gautschi, How and how not to check Gaussian quadrature formulae, BIT, 23 (1983), pp. 209–216.Google Scholar
  3. 3.
    W. Gautschi, Algorithm 726: ORTHPOL-A package of routines for generating orthogonal polynomials and Gauss-type quadrature rules, ACM Trans. Math. Software, 20 (1994), pp. 21–62.Google Scholar
  4. 4.
    W. Gautschi, Orthogonal polynomials: applications and computation, Acta Numerica, 5 (1996), pp. 45–119.Google Scholar
  5. 5.
    R. G. Gordon, New method for constructing wavefunctions for bound states and scattering, J. Chem. Phys., 51 (1969), pp. 14–25.CrossRefGoogle Scholar
  6. 6.
    R. G. Gordon, Constructing wavefunctions for nonlocal potentials, J. Chem. Phys., 52 (1970), pp. 6211–6217.CrossRefGoogle Scholar
  7. 7.
    I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products, Academic Press, San Diego, CA, 2000.Google Scholar
  8. 8.
    D.W. Lozier and F. W. J. Olver, Numerical evaluation of special functions, in Mathematics of Computation 1943–1993: A half-century of computational mathematics, Vancouver, BC, 1993, W. Gautschi, ed., Proc. Sympos. Appl. Math., Vol. 48, Amer. Math. Soc., Providence, RI, 1994, pp. 79-125.Google Scholar
  9. 9.
    Z. Schulten, D. G. M. Anderson, and R. G. Gordon, An algorithm for the evaluation of the complex Airy functions, J. Comput. Phys., 31 (1979), pp. 60–75.Google Scholar
  10. 10.
    N. M. Temme, On the numerical evaluation of the modified Bessel function of the third kind, J. Comput. Phys., 19 (1975), pp. 324–337.Google Scholar
  11. 11.
    G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd ed., Cambridge University Press, Cambridge, 1958.Google Scholar
  12. 12.
    R. Wong, Quadrature formulas for oscillatory integral transforms, Numer. Math., 39 (1982), pp. 351–360.Google Scholar

Copyright information

© Swets & Zeitlinger 2002

Authors and Affiliations

  • Walter Gautschi
    • 1
  1. 1.Department of Computer SciencesPurdue UniversityWest LafayetteUSA

Personalised recommendations