Digestive Diseases and Sciences

, Volume 48, Issue 2, pp 408–414

Elimination of Local Macrophages in Intestine Prevents Chronic Colitis in Interleukin-10-Deficient Mice

  • Norihiko Watanabe
  • Koichi Ikuta
  • Kazuichi Okazaki
  • Hiroshi Nakase
  • Yasuhiko Tabata
  • Minoru Matsuura
  • Hiroyuki Tamaki
  • Chiharu Kawanami
  • Tasuku Honjo
  • Tsutomu Chiba
Article

Abstract

Uncontrolled activation of T cells and macrophages is involved in the development of inflammatory bowel disease (IBD). However, the precise role of intestinal macrophages for development of IBD is till unclear. To investigate the role of local macrophages for development of IBD, we developed poly-D, L-lactic acid microspheres containing dichloromethylene diphosphonate, which was specifically taken up by macrophages and depleted them, and then the animal model for human IBD was treated with this reagent. We have shown that rectal administration of the microspheres reduced the numbers of resident macrophages in the intestinal lymphoid follicles of interleukin-10-deficient mice. Importantly, depletion of intestinal macrophages was associated with suppression of development of chronic colitis. These results suggest that local macrophages in the intestine play a critical role in the development of chronic colitis in an animal model for IBD. Our study implies that elimination of resident macrophages in the intestine may become a therapeutic approach to IBD.

inflammatory bowel disease macrophage drug delivery system microsphere dichloromethylene diphosphonate interleukin 10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    MacDermott RP, Stenson WF: Alterations of the immune system in ulcerative colitis and Crohn's disease. Adv Immunol 42:285-328, 1988Google Scholar
  2. 2.
    Podolsky DK: Inflammatory bowel disease (1). N Engl J Med 325:928-937, 1991Google Scholar
  3. 3.
    Sartor RB: Pathogenesis and immune mechanisms of chronic inflammatory bowel diseases. Am J Gastroenterol 92:5s-11s, 1997Google Scholar
  4. 4.
    Strober W, Ludviksson BR, Fuss IJ: The pathogenesis of mucosal inflammation in murine models of inflammatory bowel disease and Crohn disease. Ann Intern Med 128:848-856, 1998Google Scholar
  5. 5.
    Blumberg RS, Saubermann LJ, Strober W: Animal models of mucosal inflammation and their relation to human inflammatory bowel disease. Curr Opin Immunol 11:648-656, 1999Google Scholar
  6. 6.
    Morrissey PJ, Charrier K, Braddy S, Liggitt D, Watson JD: CD4+ T cells that express high levels of CD45RB induce wasting disease when transferred into congenic severe combined immunodeficient mice. Disease development is prevented by cotransfer of purified CD4+ T cells. J Exp Med 178:237-244, 1993Google Scholar
  7. 7.
    Powrie F, Leach MW, Mauze S, Caddle LB, Coffman RL: Phenotypically distinct subsets of CD4+ T cells induce or protect from chronic intestinal inflammation in C.B-17 scid mice. Int Immunol 5:1461-1471, 1993Google Scholar
  8. 8.
    Neurath MF, Fuss IJ, Kelsall BL, Stuber E, Strober W: Antibodies to interleukin 12 abrogate established experimental colitis in mice. J Exp Med 182:1281-1290, 1995Google Scholar
  9. 9.
    Kuhn R, Lohler J, Rennick DM, Rajewsky K, Muller W: Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75:263-274, 1993Google Scholar
  10. 10.
    Davidson NJ, Leach MW, Fort MM, Thompson Snipes L, Kuhn R: Muller W, Berg DJ, Rennick, DM: T helper cell 1-type CD4+ T cells, but not B cells, mediate colitis in interleukin 10-deficient mice. J Exp Med 184:241-251, 1996Google Scholar
  11. 11.
    Davidson NJ, Hudak SA, Lesley RE, Menon S, Leach MW, Rennick DM: IL-12, but not IFN-γ, plays a major role in sustaining the chronic phase of colitis in IL-10-deficient mice. J Immunol 161:3143-3149, 1998Google Scholar
  12. 12.
    D'Andrea A, Rengaraju M, Valiante NM, Chehimi J, Kubin M, Aste M, Chan SH: Kobayashi M, Young D, Nickbarg E: Production of natural killer cell stimulatory factor (interleukin 12) by peripheral blood mononuclear cells. J Exp Med 176:1387-1398, 1992Google Scholar
  13. 13.
    Macatonia SE, Hosken NA, Litton M, Vieira P, Hsieh, CS, Culpepper JA, Wysocka M, Trinchieri G, Murphy KM, O'Garra A: Dendritic cells produce IL-12 and direct the development of Th1 cells from naive CD4+ T cells. J Immunol 154:5071-5079, 1995Google Scholar
  14. 14.
    Berg DJ, Davidson N, Kuhn R, Muller W, Menon S, Holland G, Thompson Snipes L, Leach MW, Rennick D: Enterocolitis and colon cancer in interleukin-10-deficient mice are associated with aberrant cytokine production and CD4(+) TH1-like responses. J Clin Invest 98:1010-1020, 1996Google Scholar
  15. 15.
    Neurath MF, Pettersson S, Meyer zum Buschenfelde KH, Strober W: Local administration of antisense phosphorothioate oligonucleotides to the p65 subunit of NF-κB abrogates established experimental colitis in mice. Nat Med 2:998-1004, 1996Google Scholar
  16. 16.
    Brightbill HD, Libraty DH, Krutzik SR, Yang RB, Belisle JT, Bleharski JR, Maitland M, Norgard MV, Plevy SE, Smale ST, Brennan PJ, Bloom BR Godowski PJ, Modlin RL: Host defense mechanisms triggered by microbial lipopoteins through toll-like receptors. Science 285:732-736, 1999Google Scholar
  17. 17.
    Underhill DM, Ozinsky A, Hajjar AM, Stevens A, Wilson CB, Bassetti M, Aderem A: The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401:811-815, 1999Google Scholar
  18. 18.
    Sellon RK, Tonkonogy S, Schultz M, Dieleman LA, Grenther W, Balish E, Rennick DM, Sartor RB: Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect Immun 66:5224-5231, 1998Google Scholar
  19. 19.
    Tabata Y, Ikada Y: Macrophage phagocytosis of biodegradable microspheres composed of L-lactic acid/glycolic acid homo-and copolymers. J Biomed Mater Res 22:837-858, 1988Google Scholar
  20. 20.
    Tabata Y, Inoue Y, Ikada Y. Size effect on systemic and mucosal immune responses induced by oral administration of biodegradable microspheres. Vaccine 14:1677-1685, 1996Google Scholar
  21. 21.
    Nakase H, Okazaki K, Tabata Y, Uose S, Ohana M, Uchida K, Matsushima Y, Kawanami C, Oshima C, Ikada Y, Chiba T: Development of an oral drug delivery system targeting immune-regulating cells in experimental inflammatory bowel disease: a new therapeutic strategy. J Pharmacol Exp Ther 292:15-21, 2000Google Scholar
  22. 22.
    Nakase H, Okazaki K, Tabata Y, Uose, S. Ohana M, Uchida K, Nishi T, Debreceni A, Itoh T, Kawanami C, Iwano M, Ikada Y, Chiba T: An oral drug delivery system targeting immune-regulating cells ameliorates mucosal injury in trinitrobenzene sulfonic acid-induced colitis. J Pharmacol Exp Ther 297:1122-1128, 2001Google Scholar
  23. 23.
    Jun HS, Yoon CS, Zbytnuik L, van Rooijen N, Yoon JW: The role of macrophages in T cell-mediated autoimmune diabetes in nonobese diabetic mice. J Exp Med 189:347-358, 1999Google Scholar
  24. 24.
    Tran EH, Hoekstra K, van Rooijen N, Dijkstra CD, Owens R: Immune invasion of the central nervous system parenchyma and experimental allergic encephalomyelitis, but not leukocyte extravasation from blood, are prevented in macrophage-depleted mice. J Immunol 161:3767-3775, 1998Google Scholar
  25. 25.
    Tabata Y, Ikada Y: Phagocytosis of polymer microspheres by macrophages. Adv Polymer Sci 94:107-141, 1990Google Scholar
  26. 26.
    Watanabe N, Nomura T, Takai T, Chiba T, Honjo T, Tsubata T: Antigen receptor cross-linking by anti-immunoglobulin antibodies coupled to cell surface membrane induces rapid apoptosis of normal spleen B cells. Scand J Immunol 47:541-547, 1998Google Scholar
  27. 27.
    Fuss IJ, Marth T, Neurath MF, Pearlstein GR, Jain A, Strober W: Anti-interleukin 12 treatment regulates apoptosis of Th1 T cells in experimental colitis in mice. Gastroenterology 117:1078-1088, 1999Google Scholar
  28. 28.
    Watanabe N, Ikuta K, Fagarasan S, Yazumi S, Chiba T, Honjo T: Migration and differentiation of autoreactive B-1 cells induced by activated γ/δ T cells in antierythrocyte immunoglobulin transgenic mice. J Exp Med 192:1577-1586, 2000Google Scholar
  29. 29.
    Naito M, Nagai H, Kawano S, Umezu, H. Zhu H, Moriyama H, Yamamoto T, Takatsuka H, Takei Y: Liposome-encapsulated dichloromethylene diphosphonate induces macrophage apoptosis in vivo and in vitro. J Leukoc Biol 60:337-344, 1996Google Scholar
  30. 30.
    Nakase H, Okazaki K, Tabata Y, Ozeki M, Watanabe N, Ohana M, Uose S, Uchida K, Nishi T, Mastuura M, Tamaki H, Itoh T, Kawanami C, Chiba T: New cytokine delivery system using gelatin microspheres ontaining interleukin-10 for experimental inflammatory bowel disease. J Pharmacol Exp Ther 301:59-65, 2002Google Scholar
  31. 31.
    Allison MC, Cornwall S, Poulter LW, Dhillon AP, Pounder RE: Macrophage heterogeneity in normal colonic mucosa and in inflammatory bowel disease. Gut 29:1531-1538, 1988Google Scholar
  32. 32.
    Grimm MC, Pullman WE, Bennett GM, Sullivan PJ, Pavli P, Doe WF: Direct evidence of monocyte recruitment to inflammatory bowel disease mucosa. J Gastroenterol 10:387-395, 1995Google Scholar
  33. 33.
    Mahida, YR. The key role of macrophages in the immunopathogenesis of inflammatory bowel disease. Inflamm Bowel Dis 6:21-33, 2000Google Scholar
  34. 34.
    Grimm MC, Pavli P, Van de Pol E, Doe WF: Evidence for a CD14+ population of monocytes in inflammatory bowel disease mucosa—implications for pathogenesis. Clin Exp Immunol 100:291-297, 1995Google Scholar
  35. 35.
    Rogler G, Hausmann M, Vogl D, Aschenbrenner E, Andus T, Falk W, Andreesen R, Scholmerich J, Gross V: Isolation and phenotypic characterization of colonic macrophages. Clin Exp Immunol 112:205-215, 1998Google Scholar
  36. 36.
    Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, Belaiche J, Almer S, Tysk C, O'Morain CA, Gassull M, Binder V, Finkel Y, Cortot A, Modigliani R, Laurent Puig P, Gower Rousseau C, Macry J, Colombel JF, Sahbatou M, Thomas G: Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411:599-603, 2001Google Scholar
  37. 37.
    Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, Britton H, Moran T, Karaliuskas R, Duerr RH, Achkar JP, Brant SR, Bayless TM, Kirschner BS, Hanauer SB, Nunez G, Cho JH: A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 411:603-606, 2001Google Scholar
  38. 38.
    Hampe J, Cuthbert A, Croucher PJ, Mirza MM, Mascheretti S, Fisher S, Frenzel H, King K, Hasselmeyer A, MacPherson AJ, Bridger S, van Deventer S, Forbes A, Nikolaus S, Lennard Jones JE, Foelsch UR, Krawczak M, Lewis C, Schreiber S, Mathew CG: Association between insertion mutation in NOD2 gene and Crohn's disease in German and British populations. Lancet 357:1925-1928, 2001Google Scholar
  39. 39.
    Takeda K, Clausen BE, Kaisho T, Tsujimura T, Terada N, Forster I, Akira S: Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity 10:39-49, 1999Google Scholar
  40. 40.
    Whitehead R: Pathology of Crohn's disease. In Inflammatory Bowel Disease, 2nd ed. JB Kirsner, RG Shorter (eds). Philadelphia, Lea & Febiger, 1980, pp 296-307Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Norihiko Watanabe
    • 1
  • Koichi Ikuta
    • 2
  • Kazuichi Okazaki
    • 3
  • Hiroshi Nakase
    • 3
  • Yasuhiko Tabata
    • 4
  • Minoru Matsuura
    • 3
  • Hiroyuki Tamaki
    • 3
  • Chiharu Kawanami
    • 3
  • Tasuku Honjo
    • 2
  • Tsutomu Chiba
    • 3
  1. 1.Departments of Gastroenterology and Medical ChemistryGraduate School of Medicine, Kyoto UniversityKyotoJapan
  2. 2.Department of Medical ChemistryGraduate School of Medicine, Kyoto UniversityKyotoJapan
  3. 3.Department of GastroenterologyKyoto UniversityKyotoJapan
  4. 4.Institute for Frontier Medical ScienceKyoto UniversityKyotoJapan

Personalised recommendations