Journal of Computational Neuroscience

, Volume 14, Issue 2, pp 161–184 | Cite as

Propagating Waves in Visual Cortex: A Large-Scale Model of Turtle Visual Cortex

  • Zoran Nenadic
  • Bijoy K. Ghosh
  • Philip Ulinski


This article describes a large-scale model of turtle visual cortex that simulates the propagating waves of activity seen in real turtle cortex. The cortex model contains 744 multicompartment models of pyramidal cells, stellate cells, and horizontal cells. Input is provided by an array of 201 geniculate neurons modeled as single compartments with spike-generating mechanisms and axons modeled as delay lines. Diffuse retinal flashes or presentation of spots of light to the retina are simulated by activating groups of geniculate neurons. The model is limited in that it does not have a retina to provide realistic input to the geniculate, and the cortex and does not incorporate all of the biophysical details of real cortical neurons. However, the model does reproduce the fundamental features of planar propagating waves. Activation of geniculate neurons produces a wave of activity that originates at the rostrolateral pole of the cortex at the point where a high density of geniculate afferents enter the cortex. Waves propagate across the cortex with velocities of 4 μm/ms to 70 μm/ms and occasionally reflect from the caudolateral border of the cortex.

visual cortex large-scale model cortical waves Karhunen-Loéve decomposition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ammermuller J, Muller JF, Kolb H (1995) The organization of the turtle inner retina. II. Analysis of color-coded and directionally selective cells. J. Comp. Neurol. 358: 35-62.Google Scholar
  2. Baker TI, Ulinski PS (2001) Models of direction selective and nondirection selective turtle retinal ganglion cells. Soc. Neurosci. Abstr.Google Scholar
  3. Blanton MG, Kriegstein AR (1992) Properties of amino acid neurotransmitter receptors of embryonic cortical neurons when activated by exogenous and endogenous agonists. J. Neurophysiol. 67: 1185-1200.Google Scholar
  4. Blanton MG, Shen JM, Kriegstein AR (1987) Evidence for the inhibitory neurotransmitter gamma-aminobutyric acid in a spiny and sparsely spiny nonpyramidal neurons of turtle dorsal cortex. J. Comp. Neurol. 259: 277-297.Google Scholar
  5. Block J, Colombe JB, Ulinski PS (2002) Physiology of identified stellate cells from turtle visual cortex. Soc. Neurosci. Abstr.Google Scholar
  6. Boiko VP (1980) Responses to visual stimuli in thalamic neurons of the turtle Emys orbicularis. Neurosci. Behav. Physiol. 10: 183-188.Google Scholar
  7. Bower JM, Beeman D (1997) The Book of Genesis, 2nd ed. TELOS, New York.Google Scholar
  8. Bringuier V, Chavane F, Glaeser L, Fregnac Y (1999) Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons. Science 283: 695-699.Google Scholar
  9. Chagnac-Amitai Y, Connors BW (1989) Horizontal spread of synchronized activity in neocortex and its control byGABA-mediated inhibition. J. Neurophysiol. 61: 747-758.Google Scholar
  10. Chervin RD, Pierce PA, Connors BW (1988) Periodicity and directionality in the propagation of epileptiform dischargers across neocortex. J. Neurophysiol. 60: 1695-1713.Google Scholar
  11. Colombe JB, Ulinski PS (1999) Temporal dispersion windows in cortical neurons. J. Comp. Neurosci. 7: 71-87.Google Scholar
  12. Connors BW, Kriegstein AR (1986) Cellular physiology of the turtle visual cortex: Distinctive properties of pyramidal and stellate neurons. J. Neurosci. 6: 164-177.Google Scholar
  13. Contreras D, Llinas R (2001) Voltage-sensitive dye imaging of neocortical spatiotemporal dynamics to afferent activation frequency. J. Neurosci. 21: 9403-9413.Google Scholar
  14. Cosans CE, Ulinski PS (1990) Spatial organization of axons in turtle visual cortex: Intralamellar and interlamellar projections. J. Comp. Neurol. 296: 548-558.Google Scholar
  15. Desan PH (1984) The organization of the cerebral cortex of the pond turtle. Pseudemys scripta elegans. Ph.D. dissertation, Harvard University, Cambridge, MA.Google Scholar
  16. Ermentrout GB, Kleinfeld D (2001) Travelling electrical waves in cortex: Insights from phase dynamics and speculation on a computational role. Neuron 29: 33-44.Google Scholar
  17. Feldman ML, Peters A (1979) A technique for estimating total spine numbers on Golgi-impregnated dendrites. J. Comp. Neurol. 188: 527-542.Google Scholar
  18. Fowler M (1994) Analysis of spontaneous inhibitory postsynaptic potentials from pyramidal cells of turtle visual cortex. Ph.D. dissertation, University of Chicago.Google Scholar
  19. Ghanzafar AA, Nicoleilis MAL (1999) Spatiotemporal properties of layer V neurons of the rat primary somatosensory cortex. Cerebral Cortex 9: 348-361.Google Scholar
  20. Granda AM, Fulbrook JE (1989) Classification of turtle retinal ganglion cells. J. Neurophysiol. 62: 723-737.Google Scholar
  21. Grinvald A, Lieke EE, Frostig RD, Hidesheim R (1994) Cortical point spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex. J. Neurosci. 14: 2545-2568.Google Scholar
  22. Heller SB, Ulinski PS (1987) Morphology of geniculocortical axons in turtles of the genera Pseudemys and Chrysemys. Anat. Embryol. 175: 505-515.Google Scholar
  23. Jahr CE, Stevens CF (1990) A qualitative description of NMDA receptor channel kinetic behavior. J. Neurosci. 10: 1830-1837.Google Scholar
  24. Jensen RJ, DeVoe RD (1983) Comparisons of directionally selective with other ganglion cells of the turtle retina: Intracellular recording and staining. J. Comp. Neurol. 217: 271-287.Google Scholar
  25. Khatri V, Ulinski PS (2000) Functional significance of inhibitory interactions between inhibitory interneurons in visual cortex. Neurocomputing 32-33: 425-432.Google Scholar
  26. Kriegstein AR (1987) Synaptic responses of cortical pyramidal neurons to light stimulation in the isolated turtle visual system. J. Neurosci. 6: 178-191.Google Scholar
  27. Larson-Prior LJ, Ulinski PS, Slater NT (1991) Excitatory amino acid receptor-mediated transmission in geniculocortical and intracortical pathways within visual cortex. J. Neurophysiol. 66: 293-306.Google Scholar
  28. Madison DV, Nicoll RA (1984) Control of the repetitive discharge of rat CA1 pyramidal neurons in vitro. J. Physiol. (Lond.) 354: 319-331.Google Scholar
  29. Mancilla JG, Fowler MH, Ulinski PS (1998) Responses of regular spiking and fast spiking cells in turtle visual cortex to light flashes. Vis. Neurosci. 15: 979-993.Google Scholar
  30. Mancilla JG, Ulinski PS (1996) Temporal structure of compound postsynaptic potentials in visual cortex. In Bower JM, ed. Proceedings of the Fourth Computation and Neural Systems Conference. Academic Press, New York. pp. 227-232.Google Scholar
  31. Mancilla JG, Ulinski PS (2001) Role of GABAA-mediated inhibition in controlling the responses of regular spiking cells in turtle visual cortex. Vis. Neurosci. 18: 9-24.Google Scholar
  32. Marchiafava PL (1983) The organization of inputs establishes two functional and morphologically identifiable classes of ganglion cells in the retina of the turtle. Vis. Res. 23: 325-338.Google Scholar
  33. Marchiafava PL, Weiler R (1980) Intracellular analysis and structural correlates of the organization of inputs to ganglion cells in the retina of the turtle. Proc. R. Soc. Lond. B 208: 103-113.Google Scholar
  34. Mazurskaya PS (1974) Organization of receptive fields in the forebrain of Emys orbiculari. Neurosci. Behav. Physiol. 7: 311-318.Google Scholar
  35. Millonas MM, Ulinski PS (1997) The dendritic origins of fast prepotentials in pyramidal cells. In: Proceedings of Computational Neuroscience. Academic Press, San Diego.Google Scholar
  36. Mulligan KA, Ulinski PS (1990) Organization of geniculocortical projections in turtles: Isoazimuth lamellae in the visual cortex. J. Comp. Neurol. 296: 531-547.Google Scholar
  37. Nenadic Z, Ghosh BK, Ulinski PS (2000) Spatiotemporal dynamics in a model of turtle visual cortex. Neurocomputing 32-33: 479-486.Google Scholar
  38. Nenadic Z, Ghosh BK, Ulinski PS (2002) Modelling and estimation problems in the turtle visual cortex. IEEE Trans. Biomed. Eng. 49: 753-762.Google Scholar
  39. Nicolaus JM, Ulinski PS (1991) Medial and lateral differences in populations of GABAergic neurons in layer 3 of turtle visual cortex. Soc. Neurosci. Abstr. 16: 114.Google Scholar
  40. Nicolaus JM, Ulinski PS (1994) Inward rectifying conductances in inhibitory neurons in turtle visual cortex. In: Eeckman F, ed. Neural Systems: Analysis and Modelling 3. Kluwer, Boston. pp. 91-96.Google Scholar
  41. Prechtl JC (1994) Visual motion induces synchronous oscillations in turtle visual cortex. Proc. Natl. Acad. Sci. USA 91: 12467-12471.Google Scholar
  42. Prechtl JC, Bullock TH, Kleinfeld D (2000) Direct evidence for local oscillatory current sources and intracortical phase gradients in turtle visual cortex. Proc. Natl. Acad. Sci. 97: 877-882.Google Scholar
  43. Prechtl JC, Cohen LB, Mitra PP, Pesaran B, Kleinfeld D (1997) Visual stimuli induce waves of electrical activity in turtle cortex. Proc. Natl. Acad. Sci. 94: 7621-7626.Google Scholar
  44. Rainey WT, Ulinski PS (1986) Morphology of neurons in the dorsal lateral geniculate nucleus in turtles of the genera Pseudemys and Chrysemys. J. Comp. Neurol. 253: 440-465.Google Scholar
  45. Robbins KA, Senseman DM (1998) Visualizing differences in movies of cortical activity. IEEE Visualization’ 98, 217-224.Google Scholar
  46. Seidemann E, Arieli A, Grinvld A, Slovin H (2002) Dynamics of depolarization and hyperpolarization in the frontal cortex and saccade goal. Science 285: 862-865.Google Scholar
  47. Senseman DM (1996) Correspondence between visually evoked voltage-sensitive dye signals and synaptic activity recorded in cortical pyramidal cells with intracellular microelectrodes. Vis. Neurosci. 13: 963-977.Google Scholar
  48. Senseman DM (1999) Spatiotemporal structure of depolarization spread in cortical pyramidal cell populations evoked by diffuse retinal light flashes. Vis. Neurosci. 16: 65-79.Google Scholar
  49. Senseman DM, Robbins KA (1999) Modal behavior of cortical neural networks during visual processing. J. Neurosci. 19: RC3(1-7).Google Scholar
  50. Senseman DM, Robbins KA (2002) High-speed VSD imaging of visually evoked cortical waves: Decomposition into intra-and intercortical wave motions. J. Neurophysiol. 87: 1499-1514.Google Scholar
  51. Smith LM, Ebner FF, Colonnier M (1980) The thalamocortical projection in Pseudemys turtles: A quantitative electron microscopic study. J. Comp. Neurol. 190: 445-461.Google Scholar
  52. Stratford KJ, Mason AJR, Larkman AU, Major G, Jack JJB (1989) The modelling of pyramidal neurons in the visual cortex. In: Durbin R, Miall C, Mitchison G, eds. The Computing Neurone. Addison Wesley, Reading, MA. pp. 296-321.Google Scholar
  53. Strogatz SH (1994) Nonlinear Dynamics and Chaos. Addison-Wesley, Reading, MA.Google Scholar
  54. Traub RD, Wong RKS, Miles R, Michelson H (1991) A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. J. Neurophysiol. 66: 635-650.Google Scholar
  55. Ulinski PS (1986) Organization of the corticogeniculate projections in the turtle, Pseudemys scripta. J. Comp. Neurol. 254: 529-542.Google Scholar
  56. Ulinski PS (1990) The cerebral cortex in reptiles. In: Jones EG, Peters A, eds. Cerebral Cortex. Vol. 8A, Comparative Structure and Evolution of Cerebral Cortex, Part I. Plenum Press, NewYork. pp. 139-215.Google Scholar
  57. Ulinski PS, Larson-Prior LU, Slater NT (1991) Cortical circuitry underlying visual motion analysis in turtles. In: Arbib M, ed. Visual Structures and Integrated Functions. Springer, Berlin. pp. 307-324.Google Scholar
  58. Ulinski PS (1999) Neural mechanisms underlying the analysis of moving visual stimuli. In: Ulinski PS, Jones EG, Peters A, eds. Cerebral Cortex. Vol. 13. Models of Cortical Circuitry. Plenum Press, New York. pp. 283-399.Google Scholar
  59. Ulinski PS, Nautiyal J (1986) Organization of the retinogeniculate projections in turtles of the genera Pseudemys and Chrysemys. J. Comp. Neurol. 276: 92-112.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Zoran Nenadic
    • 1
  • Bijoy K. Ghosh
    • 2
  • Philip Ulinski
    • 3
  1. 1.Division of Engineering and Applied ScienceCalifornia Institute of TechnologyPasadena
  2. 2.Department of Systems Science and MathematicsWashington UniversitySt. Louis
  3. 3.Department of Anatomy and Organismal BiologyThe University of ChicagoChicago

Personalised recommendations