International Journal of Thermophysics

, Volume 19, Issue 5, pp 1447–1471 | Cite as

Subcritical and Supercritical Water Radial Distribution Function

  • H. Touba
  • G. A. Mansoori
  • E. Matteoli
Article

Abstract

A theoretical and analytic expression for the first shell, and an analytic empirical expression for the whole radial distribution function (RDF) of water are introduced. All the asymptotic limits and functionalities of the RDF with temperature and density are incorporated in these expressions. An effective Kihara pair potential function is presented for water intermolecular interactions which incorporates the hydrogen bonding by using the chain association theory. The intermolecular pair potential parameters are adjusted to the experimental x-ray diffraction data of water RDF at various temperatures. The predicted first-shell results for water near critical and in supercritical conditions compare satisfactorily with the available neutron diffraction RDF data, with the simulation RDF results, and with the empirical RDF curves. The empirical expression initially proposed for the RDF of the Lennard–Jones fluid is extended to predict the RDF and the isothermal compressibility of water to conditions where experimental or simulated data are not available. Comparison with the Lennard–Jones fluid shows that the height of the first peak of water RDF changes much less at subcritical and supercritical conditions compared to that of the Lennard–Jones fluid which decreases appreciably going from subcritical to supercritical conditions.

Kihara energy function radial distribution function water supercritical fluid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    H. Touba and G. A. Mansoori, Int. J. Thermophys. 18:1217 (1997).Google Scholar
  2. 2.
    E. Matteoli and G. A. Mansoori, J. Chem. Phys. 103:4672 (1995).Google Scholar
  3. 3.
    M. S. Wertheim, Phys. Rev. Lett. 10:321 (1963).Google Scholar
  4. 4.
    Y. E. Gorbaty and A. G. Kalinichev, J. Phys. Chem. 99:5336 (1995).Google Scholar
  5. 5.
    T. I. Mizan, P. E. Savage, and R. M. Ziff, J. Phys. Chem. 100:403 (1996).Google Scholar
  6. 6.
    K. Yamanaka, T. Yamaguchi, and H. Wakita, J. Chem. Phys. 101:9830 (1994).Google Scholar
  7. 7.
    G. Nemethy and G. H. Scheraga, J. Chem. Phys. 36:3382 (1962).Google Scholar
  8. 8.
    H. Touba and G. A. Mansoori, Fluid Phase Equil. 119:51 (1996).Google Scholar
  9. 9.
    G. E. Walrafen, M. R. Fisher, M. S. Hokmabadi, and W. H. Yang, J. Chem. Phys. 85:6970 (1986).Google Scholar
  10. 10.
    W. B. Brown, Phil. Trans. Royal Society of London, Ser. A 250:175 (1957).Google Scholar
  11. 11.
    G. A. Mansoori, Fluid Phase Equil. 87:1 (1993).Google Scholar
  12. 12.
    A. H. Narten and H. A. Levy, J. Chem. Phys. 55:2263 (1971).Google Scholar
  13. 13.
    A. A. Chialvo and P. T. Cummings, J. Phys. Chem. 100:1309 (1996).Google Scholar
  14. 14.
    H. C. Helgeson and D. H. Kirkham, American J. Sci. 274:1089 (1974).Google Scholar
  15. 15.
    A. K. Soper, F. Bruni, and M. A. Ricci, J. Chem. Phys. 106:247 (1997).Google Scholar
  16. 16.
    P. Postorino, R. H. Tromp, M. A. Ricci, A. K. Soper, and G. W. Neilson, Nature 366:668 (1993).Google Scholar
  17. 17.
    A. Lotfi, J. Vrabec, and J. Fischer, Mol. Phys. 76:1319 (1992).Google Scholar
  18. 18.
    J. K. Johnson, J. A. Zollweg, and K. E. Gubbins, Mol. Phys. 78:591 (1993).Google Scholar
  19. 19.
    G. A. Mansoori and J. F. Ely, Fluid Phase Equil. 22:253 (1985).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • H. Touba
  • G. A. Mansoori
  • E. Matteoli

There are no affiliations available

Personalised recommendations