BIT Numerical Mathematics

, Volume 41, Issue 3, pp 490–503 | Cite as

Computing the Hilbert Transform of the Generalized Laguerre and Hermite Weight Functions

  • Walter Gautschi
  • Jörg Waldvogel


Explicit formulae are given for the Hilbert transform \(f_\mathbb{R} \)w(t)dt/(tx), where w is either the generalized Laguerre weight function w(t) = 0 if t ≤ 0, w(t) = tαet if 0 <#60; t <#60; ∞, and α > −1, x > 0, or the Hermite weight function w(t) = et2, −∞ <#60; t <#60; ∞, and −∞ <#60; x <#60; ∞. Furthermore, numerical methods of evaluation are discussed based on recursion, contour integration and saddle-point asymptotics, and series expansions. We also study the numerical stability of the three-term recurrence relation satisfied by the integrals \(f_\mathbb{R} \) π n (t;w)w(t)dt/(tx), n = 0 ,1 ,2 ,..., where π n (⋅w) is the generalized Laguerre, resp. the Hermite, polynomial of degree n.

Hilbert transform classical weight functions computational methods 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, NBS Appl. Math. Ser., Vol. 55, U.S. Government Printing Office, Washington, DC, 1964.Google Scholar
  2. 2.
    W. J. Cody and H. C. Thacher, Jr., Chebyshev approximations for the exponential integral Ei(x), Math. Comp., 23 (1969), pp. 289-303.Google Scholar
  3. 3.
    W. J. Cody, K. A. Paciorek, and H. C. Thacher, Jr., Chebyshev approximations for Dawson's integral, Math. Comp., 24 (1970), pp. 171-178.Google Scholar
  4. 4.
    P. J. Davis and P. Rabinowitz, Methods of Numerical Integration, 2nd ed., Academic Press, Orlando, FL, 1984.Google Scholar
  5. 5.
    W. Gautschi and J. Wimp, Computing the Hilbert transform of a Jacobi weight function, BIT, 27 (1987), pp. 203-215.CrossRefGoogle Scholar
  6. 6.
    W. Gautschi, The computation of special functions by linear difference equations, in Advances in Difference Equations, S. Elaydi, I. Győri, and G. Ladas, eds., Gordon & Breach, Amsterdam, 1997, pp. 213-243.Google Scholar
  7. 7.
    W. Gautschi, The incomplete gamma function since Tricomi, in Tricomi's Ideas and Contemporary Applied Mathematics, Atti dei Convegni Lincei, n. 147, Accademia Nazionale dei Lincei, Roma, 1998, pp. 203-237.Google Scholar
  8. 8.
    P. Henrici, Applied and Computational Complex Analysis, Vol.3: Discrete Fourier Analysis-Cauchy Integrals-Construction of Conformal Maps-Univalent Functions, Wiley, New York, 1986. [Also: Wiley Classics Library Edition, 1993.]Google Scholar
  9. 9.
    K. A. Paciorek, Algorithm 385-Exponential integral Ei(x), Comm. ACM, 13 (1970), pp. 446-447. Certification and Remarks, ibid., pp. 448-449, 15 (1972), p. 1074.CrossRefGoogle Scholar

Copyright information

© Swets & Zeitlinger 2001

Authors and Affiliations

  • Walter Gautschi
    • 1
  • Jörg Waldvogel
    • 2
  1. 1.Department of Computer SciencesPurdue UniversityWest LafayetteUSA
  2. 2.Seminar fürAngewandte MathematikZürichSwitzerland

Personalised recommendations