Advertisement

Journal of Computational Neuroscience

, Volume 14, Issue 2, pp 185–192 | Cite as

On the Integration of Subthreshold Inputs from Perforant Path and Schaffer Collaterals in Hippocampal CA1 Pyramidal Neurons

  • Michele Migliore
Article

Abstract

Using a realistic model of a CA1 hippocampal pyramidal neuron, we make experimentally testable predictions on the roles of the non-specific cation current, I h , and the A-type Potassium current, I A , in modulating the temporal window for the integration of the two main excitatory afferent pathways of a CA1 neuron, the Schaffer Collaterals and the Perforant Path. The model shows that the experimentally observed increase in the dendritic density of I h and I A could have a major role in constraining the temporal integration window for these inputs, in such a way that a somatic action potential (AP) is elicited only when they are activated with a relative latency consistent with the anatomical arrangement of the hippocampal circuitry.

dendritic integration IA Ih CA1 modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agmon-Snir H, Carr CE, Rinzel J (1998) The role of dendrites in auditory coincidence detection. Nature 393: 268-272.Google Scholar
  2. Berger T, Larkum ME, Luscher HR (2001) High I(h) channel density in the distal apical dendrite of layer V pyramidal cells increases bidirectional attenuation of EPSPs. J. Neurophysiol. 85: 855-868.Google Scholar
  3. Chrobak JJ, Buzsáki G (1998) Gamma oscillations in the entorhinal cortex of the freely behaving rat. J. Neurosci. 18: 388-398.Google Scholar
  4. Csicsvari J, Hirase H, Czurko A, Mamiya A, Buzsáki G (1999) Oscillatory coupling of hippocampal pyramidal cells and interneurons in the behaving rat. J. Neurosci. 19: 274-287.Google Scholar
  5. Frick A, Magee JC, Johnston D (2001) Ca2+ signals from backpropagating action potentials in small oblique dendrites of CA1 pyramidal neurons, Soc. Neurosci. Abs., Vol. 31.Google Scholar
  6. Fries P, Reynolds JH, Rorie AE, Desimone R (2001) Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291: 1560-3563.Google Scholar
  7. Gray CM, Konig P, Engel AK, Singer W(1989) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338: 334-337.Google Scholar
  8. Hines M, Carnevale T (1997) The NEURON simulation environment. Neural Comp. 9: 178-1209.Google Scholar
  9. Hoffman DA, Magee JC, Colbert CM, Johnston D (1997) K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 387: 869-875.Google Scholar
  10. Jaffe DB, Carnevale NT (1999) Passive normalization of synaptic integration influenced by dendritic architecture. J. Neurophysiol. 82: 3268-3285.Google Scholar
  11. Johnston D, Amaral DG (1998) Hippocampus. In: GM Shepherd, ed. The Synaptic Organization of the Brain, 4th edn. Oxford Univ. Press, New York, pp. 417-458.Google Scholar
  12. Johnston D, Hoffman DA, Magee JC, Poolos NP, Watanabe S, Colbert CM, Migliore M (2000) Dendritic potassium channels in hippocampal pyramidal neurons. J. Physiol. 525: 75-81.Google Scholar
  13. Korngreen A, Sakmann B (2000) Voltage-gatedK+ channels in layer 5 neocortical pyramidal neurones from young rats: Subtypes and gradients. J. Physiol. 525: 621-639.Google Scholar
  14. Larkum ME, Zhu JJ, Sakmann B (2001) Dendritic mechanisms underlying the coupling of the dendritic with the axonal action potential initiation zone of adult rat layer 5 pyramidal neurons. J. Physiol. 533: 447-466.Google Scholar
  15. Magee JC (1998) Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. J. Neurosci. 18: 7613-7624.Google Scholar
  16. Magee JC (1999) Dendritic Ih normalizes temporal summation in hippocampal CA1 neurons. Nat Neurosci. 2: 508-514.Google Scholar
  17. Magee JC, Cook E (2000) Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons. Nature Neurosci. 3: 895-903.Google Scholar
  18. Megías M, Emri ZS, Freund TF, Gulyás AI (2001) Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience 102: 527-540.Google Scholar
  19. Migliore M, Hoffman DA, Magee JC, Johnston D (1999) Role of an A-type K+ conductance in the back-propagation of action potentials in the dendrites of hippocampal pyramidal neurons. J. Comput. Neurosci. 7: 5-16.Google Scholar
  20. Migliore M, Shepherd GM (2002) Emerging rules for the distributions of active dendritic conductances. Nature Rev. Neurosci. 3: 362-370.Google Scholar
  21. Rall W (1964) Theoretical significance of dendritic trees for neuronal input-output relations. In: RF Reiss, ed. Neural Theory and Modeling. Stanford University Press, Palo Alto, CA, pp. 73-97.Google Scholar
  22. Spruston N, Häusser M, Stuart G (1999) Dendritic integration. In: G Stuart, N Spruston, M Häusser, eds. Dendrites. Oxford University Press, New York, NY, pp. 231-260.Google Scholar
  23. Stuart GJ, Häusser M(2001) Dendritic coincidence detection of EPSPs and action potentials. Nature Neurosci. 4: 63-71.Google Scholar
  24. Treves A, Rolls ET (1994) Computational analysis of the role of the hippocampus in memory. Hippocampus 4: 374-391.Google Scholar
  25. Urban NN, Barrionuevo G (1998) Active summation of excitatory postsynaptic potentials in hippocampal CA3 pyramidal neurons. Proc. Natl. Acad. Sci. USA 95: 11450-11455.Google Scholar
  26. Williams SR, Stuart GJ (2000) Site independence of EPSP time course is mediated by dendritic I(h) in neocortical pyramidal neurons. J. Neurophysiol 83: 3177-3182.Google Scholar
  27. Yeckel MF, Berger TW (1998) Spatial distribution of potentiated synapses in hippocampus: Dependence on cellular mechanisms and network properties. J. Neurosci. 18: 438-450.Google Scholar
  28. Yuste R (1997) Potassium channels: Dendritic shock absorbers. Nature 387: 851-853.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Michele Migliore
    • 1
    • 2
  1. 1.Section of NeurobiologyYale University School of MedicineNew HavenUSA
  2. 2.Nat. Res. CouncilInstitute of BiophysicsPalermoItaly

Personalised recommendations