BIT Numerical Mathematics

, Volume 42, Issue 4, pp 779–795 | Cite as

Overlapping Schwarz Waveform Relaxation for the Heat Equation in N Dimensions

  • Martin J. Gander
  • Hongkai Zhao
Article

Abstract

We analyze overlapping Schwarz waveform relaxation for the heat equation in n spatial dimensions. We prove linear convergence of the algorithm on unbounded time intervals and superlinear convergence on bounded time intervals. In both cases the convergence rates are shown to depend on the size of the overlap. The linear convergence result depends also on the number of subdomains because it is limited by the classical steady state result of overlapping Schwarz for elliptic problems. However the superlinear convergence result is independent of the number of subdomains. Thus overlapping Schwarz waveform relaxation does not need a coarse space for robust convergence independent of the number of subdomains, if the algorithm is in the superlinear convergence regime. Numerical experiments confirm our analysis. We also briefly describe how our results can be extended to more general parabolic problems.

Domain decomposition waveform relaxation Schwarz method for parabolic problems superlinear convergence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, U.S. Govt. Print. Off., Washington, DC, 1964.Google Scholar
  2. 2.
    A. Bellen and M. Zennaro, The use of Runge-Kutta formulae in waveform relaxation methods, Appl. Numer. Math., 11 (1993), pp. 95-114.Google Scholar
  3. 3.
    M. Bjorhus, A note on the convergence of discretized dynamic iteration, BIT, 35 (1995), pp. 291-296.Google Scholar
  4. 4.
    K. Burrage, Parallel and Sequential Methods for Ordinary Differential Equations, Oxford University Press, New York, 1995.Google Scholar
  5. 5.
    K. Burrage, Z. Jackiewitz, S. P. Norsett, and R. A. Renaut, Preconditioning waveform relaxation iterations for differential systems, BIT, 36 (1996), pp. 54-76.Google Scholar
  6. 6.
    X.-C. Cai, Additive Schwarz algorithms for parabolic convection-diffusion equations, Numer. Math., 60 (1991), pp. 41-61.Google Scholar
  7. 7.
    X.-C. Cai, Multiplicative Schwarz methods for parabolic problems, SIAMJ. Sci. Comput., 15 (1994), pp. 587-603.Google Scholar
  8. 8.
    J. R. Cannon, The One-Dimensional Heat Equation, in Encyclopedia of Mathematics and its Applications, Addison-Wesley, Reading, MA, 1984.Google Scholar
  9. 9.
    T. F. Chan and T. P. Mathew, Domain decomposition algorithms, in Acta Numerica 1994, Cambridge University Press, 1994, pp. 61-143.Google Scholar
  10. 10.
    A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, NJ, 1964.Google Scholar
  11. 11.
    M. J. Gander, Overlapping Schwarz for parabolic problems, in Ninth International Conference on Domain Decomposition Methods, University of Bergen, Norway, P. E. Bjorstad, M. Espedal, and D. Keyes, eds., 1997, pp. 97-104.Google Scholar
  12. 12.
    M. J. Gander, Overlapping Schwarz waveform relaxation for parabolic problems, in Domain Decomposition Methods 10, The Tenth International Conference on Domain Decomposition Methods, 1997, Boulder, CO, J. Mandel, Ch. Farhat, and X.-C. Cai, eds., Contemporary Mathematics, Vol. 218, AMS, Providence, RI, 1998, pp. 425-431.Google Scholar
  13. 13.
    M. J. Gander, A waveform relaxation algorithm with overlapping splitting for reaction diffusion equations, Numer. Linear Algebra Appl., 6 (1998), pp. 125-145.Google Scholar
  14. 14.
    M. J. Gander and A. M. Stuart, Space-time continuous analysis of waveform relaxation for the heat equation, SIAM J. Sci. Comput., 19 (1998), pp. 2014-2031.Google Scholar
  15. 15.
    M. J. Gander and H. Zhao, Overlapping Schwarz waveform relaxation for parabolic problems in higher dimension, in Proceedings of Algoritmy 14, A. Handlovi?ová, M. Komorníkova, and K. Mikula, eds., Slovak Technical University, September 1997, pp. 42-51.Google Scholar
  16. 16.
    E. Giladi and H. Keller, Space time domain decomposition for parabolic problems, Tech. Rep. 97-4, Center for Research on Parallel Computation, California Institute of Technology, Pasadena, CA, 1997.Google Scholar
  17. 17.
    J. Janssen and S. Vandewalle, Multigrid waveform relaxation on spatial finite element meshes: The continuous-time case, SIAM J. Numer. Anal., 33 (1996), pp. 456-474.Google Scholar
  18. 18.
    J. Janssen and S. Vandewalle, Multigrid waveform relaxation on spatial finite element meshes: The discrete-time case, SIAM J. Sci. Comput., 17 (1996), pp. 133-155.Google Scholar
  19. 19.
    R. Jeltschand B. Pohl, Waveform relaxation with overlapping splittings, SIAM J. Sci. Comput., 16 (1995), pp. 40-49.Google Scholar
  20. 20.
    G. M. Liberman, Second Order Parabolic Differential Equations, World Scientific Publishing, Singapore, 1996.Google Scholar
  21. 21.
    P.-L. Lions, On the Schwarz alternating method. I, in First International Symposium on Domain Decomposition Methods for Partial Differential Equations, R. Glowinski, G. H. Golub, G. A. Meurant, and J. Périaux, eds., SIAM, Philadelphia, PA, 1988, pp. 1-42.Google Scholar
  22. 22.
    C. Lubich and A. Ostermann, Multi-grid dynamic iteration for parabolic equations, BIT, 27 (1987), pp. 216-234.Google Scholar
  23. 23.
    U. Miekkala and O. Nevanlinna, Convergence of dynamic iteration methods for initial value problems, SIAM J. Sci. Stat. Comput., 8 (1987), pp. 459-482.Google Scholar
  24. 24.
    O. Nevanlinna, Remarks on Picard-Lindelöf iterations. Part I, BIT, 29 (1989), pp. 328-346.Google Scholar
  25. 25.
    O. Nevanlinna, Remarks on Picard-Lindelöf iterations. Part II, BIT, 29 (1989), pp. 535-562.Google Scholar
  26. 26.
    S. Vandewalle and G. Horton, Fourier mode analysis of the multigrid waveform relaxation and time-parallel multigrid methods, Computing, 54 (1995), pp. 317-330.Google Scholar

Copyright information

© Swets & Zeitlinger 2002

Authors and Affiliations

  • Martin J. Gander
    • 1
  • Hongkai Zhao
    • 2
  1. 1.Department of Mathematics and StatisticsMcGill UniversityMontrealCanada
  2. 2.Department of MathematicsUniversity of CaliforniaIrvineUSA

Personalised recommendations