Plasma Chemistry and Plasma Processing

, Volume 18, Issue 3, pp 363–373 | Cite as

Methane Decomposition in a Barium Titanate Packed-Bed Nonthermal Plasma Reactor

  • Atsushi Ogata
  • Koichi Mizuno
  • Satoshi Kushiyama
  • Toshiaki Yamamoto


The behavior of lattice oxygen species of the ferroelectric material during methane oxidation was investigated using a nonthermal plasma reactor packed with BaTiO3pellets. Lattice oxygen species in BaTiO3play an important role in the formation of N2O and the oxidation of CH4. The oxidation products such as CO and CO2were formed from independent reaction pathways. Lattice oxygen species were able to preferentially oxidize the carbon species deposited on the pellet surface into CO. Also, N2O and NOxwere independently formed in the N2O2reaction, suggesting that different oxygen species give N2O and NOx. N2O was produced by the oxidation of molecular nitrogen with lattice oxygen species.

Nonthermal plasma CH4 N2NOx CO CO2 BaTiO3 lattice oxygen atmospheric pressure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Oda, A. Kumada, K. Tanaka, T. Takahashi, and S. Masuda, J. Electrost. 35, 93 (1995), and references cited therein.Google Scholar
  2. 2.
    T. Oda, R. Yamashita, I. Haga, T. Takahashi, and S. Masuda, IEEE Trans. Ind. Appl. 32, 118 (1996), and references cited therein.Google Scholar
  3. 3.
    T. Yamamoto, K. Mizuno, I. Tamori, A. Ogata, M. Nifuku, M. Michalska, and G. Prieto, IEEE Trans. Ind. Appl. 32, 100 (1996).Google Scholar
  4. 4.
    T. Yamamoto, J-S. Chang, A. A. Berezin, H. Kohno, S. Honda, and A. Shibuya, J. Adv. Oxid. Technol. 1, 67 (1996).Google Scholar
  5. 5.
    T. Yamamoto, P. A. Lawless, M. K. Owen, D. S. Ensor, and C. Boss, NATO ASI Series, G34, Part B, pp. 223–237 (1993).Google Scholar
  6. 6.
    T. Yamamoto, K. Ramanathan, P. A. Lawless, D. S. Ensor, J. R. Newsome, N. Plaks, and G. H. Ramsey, IEEE Trans. Ind. Appl. 28, 528 (1992).Google Scholar
  7. 7.
    S. Futamura, T. Yamamoto, and P. A. Lawless, IEEE Trans. Ind. Appl. 33, 447 (1997).Google Scholar
  8. 8.
    A. Zhang, S. Futamura, G. Prieto, and T. Yamamoto, Proceedings of Workshop on Non-Thermal Plasma Processing, Tokyo, March 26, 1996, pp. 37–46.Google Scholar
  9. 9.
    C. M. Nunez, G. H. Ramsey, W. H. Ponder, J. H. Abbott, L. E. Hamel, and P. H. Kariher, Air Waste 43, 242 (1993).Google Scholar
  10. 10.
    T. Shimizu, Catal. Rev. Sci. Eng. 34, 355 (1992).Google Scholar
  11. 11.
    H. Nagamoto, K. Amanuma, H. Nobutomo, and H. Inoue, Chem. Lett., 237 (1988).Google Scholar
  12. 12.
    H. Arai, T. Yamada, K. Eguchi, and T. Seiyama, Appl. Catal. 26, 265 (1986).Google Scholar
  13. 13.
    A. Oumghar, J. C. Legrand, A. M. Diamy, and N. Turillon, Plasma Chem. Plasma Process. 15, 87 (1995).Google Scholar
  14. 14.
    D. E. Tevault, Plasma Chem. Plasma Process. 5, 369 (1985).Google Scholar
  15. 15.
    M. E. Fraser, D. A. Fee, and R. S. Sheinson, Plasma Chem. Plasma Process. 5, 163 (1985).Google Scholar
  16. 16.
    D. E. Tevault, Plasma Chem. Plasma Process. 7, 231 (1987).Google Scholar
  17. 17.
    B. Eliasson and U. Kogelschatz, J. Chim. Phys. 83, 279 (1986).Google Scholar
  18. 18.
    D. K. Brandvold, P. Martinez, and D. Dogruel, Atmos. Environ. 23, 1881 (1989).Google Scholar
  19. 19.
    R. D. Hill, I. Rahim, and R. G. Rinker, Ind. Eng. Chem. Res. 27, 1264 (1988).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Atsushi Ogata
    • 1
  • Koichi Mizuno
    • 1
  • Satoshi Kushiyama
    • 1
  • Toshiaki Yamamoto
    • 2
  1. 1.National Institute for Resources and EnvironmentIbarakiJapan
  2. 2.Osaka Prefecture UniversityOsakaJapan

Personalised recommendations