Lifetime Data Analysis

, Volume 9, Issue 1, pp 57–70 | Cite as

Rank Estimation of Log-Linear Regression with Interval-Censored Data

  • Linxiong Li
  • Zongwei Pu
Article

Abstract

Interval-censored data arise in a wide variety of research and application fields such as cancer and AIDS studies. In this paper, we study a log-linear regression model when data are subject to interval censoring. We use a U-statistic based on ranks to estimate regression coefficients and establish large sample properties of the estimator. We illustrate the performance of the proposed estimate with simulations and a numerical example.

asymptotic distribution consistency log-linear regression model mixed interval censoring U-statistic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. G. Akritas, S. A. Amurphy, and M. P. LaValley, “The Theil-Sen estimator with doubly censored data and applications to astronomy,” Journal of the American Statistical Association vol. 90 pp. 170–177, 1995.Google Scholar
  2. J. Buckley and L. James, “Linear regression with censored data,” Biometrika vol. 66 pp. 429–436, 1979.Google Scholar
  3. D. M. Finkelstein, “A proportional hazards model for interval censored failure time data,” Biometrics vol. 42 pp. 845–854, 1986.Google Scholar
  4. D. M. Finkelstein and R. A. Wolfe, “A semiparametric model for regression analysis of interval censored failure time data,” Biometrics vol. 41 pp. 933–945, 1985.Google Scholar
  5. P. Groeneboom and J. A. Wellner, Information Bounds and Nonparametric Maximum Likelihood Estimation, Birkhäuser Verlag: Basel, 1992.Google Scholar
  6. T. Z. Lai and Z. Ying, “Linear rank statistics in regression analysis with censored or truncated data,” J. Mult. Anal. vol. 19 pp. 531–536, 1990.Google Scholar
  7. L. Li and Z. Pu, “Regression models with arbitrarily interval-censored observations,” Comm. Statist.-Theory and Methods vol. 28 pp. 1547–1563, 1999.Google Scholar
  8. L. Li and Q. Yu, “Self-consistent estimators of survival functions with doubly-censored data,” Comm. Statist.-Theory and Methods vol. 26 pp. 2609–2621, 1997.Google Scholar
  9. L. Li, T. Watkins, and Q. Yu, “An EM algorithm for smoothing the self-consistent estimator of survival functions with interval-censored data,” Scand. J. Statist. vol. 24 pp. 531–542, 1997.Google Scholar
  10. R. G. Miller, “Least squares regression with censored data,” Biometrika vol. 63 pp. 449–464, 1976.Google Scholar
  11. P. M. Odell, K. M. Anderson, and R. B. D'Agostino, “Maximum likelihood estimation for interval-censored data using a Weibull-based accelerated failure time model,” Biometrics vol. 48 pp. 951–959, 1992.Google Scholar
  12. R. Peto, “Experimental survival curve for interval-censored data,” Applied Statistics vol. 22 pp. 86–91, 1973.Google Scholar
  13. R. L. Prentice, “Linear rank tests with right censored data,” Biometrika vol. 65 pp. 167–179, 1978.Google Scholar
  14. R. H. Randles and D. A. Wolfe, Introduction to the Theory of Nonparametric Statistics, Wiley: New York, 1979.Google Scholar
  15. D. Rabinowitz, A. Tsiatis, and J. Aragon, “Regression with interval censored data,” Biometrika vol. 82 pp. 501–513, 1995.Google Scholar
  16. A. Tsiatis, “Estimating regression parameters using linear rank tests for censored data,” Ann. Statist. vol. 18 pp. 354–372, 1990.Google Scholar
  17. B. W. Turnbull, “The empirical distribution function with arbitrary grouped, censored and truncated data,” J. Roy. Statist. Soc. Ser. B vol. 38 pp. 290–295, 1976.Google Scholar
  18. L. J. Wei, Z. Ying, and D. Y. Lin, “Linear regression analysis of censored survival data based on rank tests,” Biometrika vol. 77 pp. 845–851, 1990.Google Scholar
  19. Z. Ying, S. H. June, and L. J. Wei, “Survival analysis with median regression models,” Journal of the American Statistical Association vol. 90 pp. 178–184, 1995.Google Scholar
  20. Q. Yu, L. Li, and G. Wong, “Variance of the MLE of a survival function with interval-censored data,” Sankhyā A vol. 60 pp. 184–198, 1998.Google Scholar
  21. Q. Yu, L. Li, and G. Wong, “On consistency of the self-consistent estimator of survival functions with interval-censored data,” Scand. J. Statist. vol. 27 pp. 35–44, 2000.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Linxiong Li
    • 1
  • Zongwei Pu
    • 1
  1. 1.Department of MathematicsUniversity of New OrleansNew OrleansUSA

Personalised recommendations