Journal of Dynamical and Control Systems

, Volume 3, Issue 4, pp 589–604 | Cite as

On Isomonodromic Deformations of Fuchsian Systems

  • A. A. Bolibruch
Article

Abstract

Isomonodromic deformations of Fuchsian systems are considered. A description of all possible forms of such isomonodromic deformations is presented.

Fuchsian system monodromy isomonodromic deformation integrability resonant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. V. Anosov and A. A. Bolibruch, The Riemann—Hilbert problem. In: Aspects of Mathematics. Vieweg, Braunschweig/Wiesbaden, 1994.Google Scholar
  2. 2.
    A. A. Bolibruch, The Riemann-Hilbert problem. Russ. Math. Surv. 45 (1990), No. 2, 1–47.Google Scholar
  3. 3.
    ______, On the fundamental matrix of a Pfaffian system of Fuchsian type. Math USSR Izv. 11 (1977), No. 5, 1031–1054.Google Scholar
  4. 4.
    ______, Vector bundles associated with monodromies and asymptotics of Fuchsian systems. J. Dynam. and Control Syst. 1 (1995), No. 2, 229–251.Google Scholar
  5. 5.
    F. R. Gantmacher, Theory of matrices, Vol. II. Chelsea, New York, 1959.Google Scholar
  6. 6.
    H. Grauert, Analytische Faserungen uber holomorph-vollstandingen Raumen. Math. Ann. 135 (1958), No. 3, 263–273.Google Scholar
  7. 7.
    R. C. Gunning, Complex analysis. Princeton Univ. Press, Princeton, NJ, 1995.Google Scholar
  8. 8.
    D. Husemoller, Fibre bundles. McGraw-Hill, New York, 1966.Google Scholar
  9. 9.
    P. Hartman, Ordinary differential equations. John Wiley, 1964.Google Scholar
  10. 10.
    A. Its and V. Novokshenov, The isomonodromic deformation method in the theory of Painleve equations. Lect. Notes Math. 1191 (1986).Google Scholar
  11. 11.
    M. Jimbo and T. Miwa, Monodromy preserving deformations of linear ordinary differential equations. II. R.I.M.S. Preprint 327, 1980.Google Scholar
  12. 12.
    A. H. M. Levelt, Hypergeometric functions. Nederl. Akad. Wetensch. Proc. Ser. A 64 (1961).Google Scholar
  13. 13.
    B. Malgrange, La classification des connexions irregulieres a une variable. Semin. Ecole norm. super. (1979–1982). See also: Sur les deformation isomonodromic. Progress Math., Birkhauser 37 (1983), 427–438.Google Scholar
  14. 14.
    ______, Deformation des systemes differentiels 2. J. Ramanujan Math. Soc. 1 (1986), 3–15.Google Scholar
  15. 15.
    A. L. Onishchik and E. B. Vinberg, Foundations of Lie theory. In: Encyclopaedia of Mathematical Sciences, Vol. 20, Springer-Verlag, Berlin, 1993, 1–94, 231–235.Google Scholar
  16. 16.
    L. Schlesinger, Uber Losungen gewisser Differentialgleichungen als Funktionen der singularen Punkte. J. reine and angew. Math. 129 (1905), 287–294.Google Scholar
  17. 17.
    S. Sibuya, Linear differential equations in the complex domain: Problems of analytic continuation. Providence, 1990.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • A. A. Bolibruch
    • 1
  1. 1.Russian Academy of SciencesSteklov Mathematical InstituteMoscowRussia

Personalised recommendations