Advertisement

Congenital Malformations in Offspring of Diabetic Mothers—Animal and Human Studies

  • Ulf J. Eriksson
  • Jonas Cederberg
  • Parri Wentzel
Article
anomalies diabetes-in-pregnancy glucose arachidonic acid inositol antioxidant(s) reactive oxygen species 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lazarow A, Kim JN, Wells LJ. Birth weight and fetal mortality in pregnant subdiabetic rats. Diabetes 1960;9:114–117.Google Scholar
  2. 2.
    Wentzel P, Wentzel CR, Gareskog MB, Eriksson UJ. Induction of embryonic dysmorphogenesis by high glucose concentration, disturbed inositol metabolism, and inhibited protein kinase C activity. Teratology 2001;63:193–201.Google Scholar
  3. 3.
    Mølsted-Pedersen L, Tygstrups I, Pedersen J. Congenital malformations in newborn infants of diabetic women: Correlation with maternal diabetic vascular complications. Lancet 1964;i:1124–1126.Google Scholar
  4. 4.
    Ray JG, O'Brien TE, Chan WS. Preconception care and the risk of congenital anomalies in the offspring of women with diabetes mellitus: A meta-analysis. Q J Med 2001;94:435–444.Google Scholar
  5. 5.
    Damm P, Molsted-Pedersen L. Significant decrease in congenital malformations in newborn infants of an unselected population of diabetic women. Am J Obstet Gynecol 1989;161:1163–1167.Google Scholar
  6. 6.
    Hanson U, Persson B, Thunell S. Relationship between haemoglobin A1c in early type 1 (insulin-dependent) diabetic pregnancy and the occurrence of spontaneous abortion and fetal malformation in Sweden. Diabetologia 1990;33:100–104.Google Scholar
  7. 7.
    7. DCCT. Pregnancy outcomes in the Diabetes Control and Complications Trial. Am J Obstet Gynecol 1996;174:1343–1353.Google Scholar
  8. 8.
    Loffredo CA, Wilson PD, Ferencz C. Maternal diabetes: An independent risk factor for major cardiovascular malformations with increased mortality of affected infants. Teratology 2001;64:98– 106.Google Scholar
  9. 9.
    Pedersen J. The pregnant diabetic and her newborn. Problems and management, 2nd ed. Copenhagen: Munksgaard, 1977.Google Scholar
  10. 10.
    Kuhl C, Coustan D, Kitzmiller J, Philipps A, Binder C, Schneider H. Report on the 28th annual meeting of the Diabetic Pregnancy Study Group. Diabetologia 1998;41(suppl):8–14.Google Scholar
  11. 11.
    Carvalheiro M. Diabetes in pregnancy: State of the art in the Mediterranean countries, Portugal. Ann Ist Super Sanita 1997;33:303–306.Google Scholar
  12. 12.
    Cordero L, Treuer SH, Landon MB, Gabbe SG. Management of infants of diabetic mothers. Arch Pediatr Adolesc Med 1998;152:249–254.Google Scholar
  13. 13.
    Hadden DR. How to improve prognosis in type 1 diabetic pregnancy. Old problems, new concepts. Diabetes Care 1999;22:B104–B108.Google Scholar
  14. 14.
    Schwartz R, Teramo KA. Effects of diabetic pregnancy on the fetus and newborn. Semin Perinatol 2000;24:120–135.Google Scholar
  15. 15.
    Greene MF. Spontaneous abortions and major malformations in women with diabetes mellitus. Semin Reprod Endocrinol 1999;17:127–136.Google Scholar
  16. 16.
    Kuhl C. Etiology and pathogenesis of gestational diabetes. Diabetes Care 1998;21:B19–B26.Google Scholar
  17. 17.
    de Leiva A. Frontiers of clinical research in type 1 diabetes. Horm Res 1996;45:32–35.Google Scholar
  18. 18.
    Schaefer-Graf UM, Buchanan TA, Xiang A, Songster G, Montoro M, Kjos SL. Patterns of congenital anomalies and relationship to initial maternal fasting glucose levels in pregnancies complicated by type 2 and gestational diabetes. Am J Obstet Gynecol 2000;182:313–320.Google Scholar
  19. 19.
    Brydon P, Smith T, Proffitt M, Gee H, Holder R, Dunne F. Pregnancy outcome in women with type 2 diabetes mellitus needs to be addressed. Int J Clin Pract 2000;54:418–419.Google Scholar
  20. 20.
    Langer O, Conway DL. Level of glycemia and perinatal outcome in pregestational diabetes. J Matern Fetal Med 2000;9:35–41.Google Scholar
  21. 21.
    Kucera J. Rate and type of congenital anomalies among offspring of diabetic women. J Reprod Med 1971;7:61–70.Google Scholar
  22. 22.
    Becerra JE, Khoury MJ, Cordero JF, Erickson JD. Diabetes mellitus during pregnancy and the risks for specific birth defects: A population-based case-control study. Pediatrics 1990;85:1–9.Google Scholar
  23. 23.
    Hellmuth E, Damm P, Molsted-Pedersen L. Congenital malformations in offspring of diabetic women treated with oral hypoglycaemic agents during embryogenesis. Diabet Med 1994;11:471– 474.Google Scholar
  24. 24.
    Albert TJ, Landon MB, Wheller JJ, Samuels P, Cheng RF, Gabbe S. Prenatal detection of fetal anomalies in pregnancies complicated by insulin-dependent diabetes mellitus. Am J Obstet Gynecol 1996;174:1424–1428.Google Scholar
  25. 25.
    Botta RM. Congenital malformations in infants of 517 pregestational diabetic mothers. Ann Ist Super Sanita 1997;33:307–311.Google Scholar
  26. 26.
    Garcia-Patterson A, Corcoy R, Rigla M, Caballero A, Adelantado JM, Altirriba O, de Leiva A. Does preconceptional counselling in diabetic women influence perinatal outcome? Ann Ist Super Sanita 1997;33:333–336.Google Scholar
  27. 27.
    Casson IF, Clarke CA, Howard CV, McKendrick O, Pennycook S, Pharoah PO, Platt MJ, Stanisstreet M, van Velszen D, Walkinshaw S. Outcomes of pregnancy in insulin dependent diabetic women: Results of a five year population cohort study. Br Med J 1997;315:275–278.Google Scholar
  28. 28.
    Chia YT, Chua S, Thai AC, Kek LP, Ratnam SS. Congenital abnormalities and pregestational diabetes mellitus in pregnancy. Singapore Med J 1996;37:380–383.Google Scholar
  29. 29.
    Hawthorne G, Robson S, Ryall EA, Sen D, Roberts SH, Ward Platt MP. Prospective population based survey of outcome of pregnancy in diabetic women: Results of the Northern Diabetic Pregnancy Audit, 1994. Br Med J 1997;315:279–281.Google Scholar
  30. 30.
    Janssen PA, Rothman I, Schwartz SM. Congenital malformations in newborns of woman with established and gestational diabetes in Washington State, 1984–91. Paediatr Perinat Epidemiol 1996;10:52–63.Google Scholar
  31. 31.
    Mironiuk M, Kietlinska Z, Jezierska-Kasprzyk K, Piekosz-Orzechowska B. A class of diabetes in mother, glycemic control in early pregnancy and occurrence of congenital malformations in newborn infants. Clin Exp Obstet Gynecol 1997;24:193–197.Google Scholar
  32. 32.
    Nielsen GL, Sorensen HT, Nielsen PH, Sabroe S, Olsen J. Glycosylated hemoglobin as predictor of adverse fetal outcome in type 1 diabetic pregnancies. Acta Diabetol 1997;34:217–222.Google Scholar
  33. 33.
    Towner D, Kjos S, Leung B, Montoro M, Xiang A, Mestman J, Buchanan T. Congenital malformations in pregnancies complicated by NIDDM. Diabetes Care 1995;18:1446–1451.Google Scholar
  34. 34.
    von Kries R, Kimmerle R, Schmidt JE, Hachmeister A, Bohm O, Wolf HG. Pregnancy outcomes in mothers with pregestational diabetes: A population-based study in North Rhine (Germany) from 1988 to 1993. Eur J Pediatr 1997;156:963–967.Google Scholar
  35. 35.
    Schaefer UM, Songster G, Xiang A, Berkowitz K, Buchanan TA, Kjos SL. Congenital malformations in offspring of women with hyperglycemia first detected during pregnancy. Am J Obstet Gynecol 1997;177:1165–1171.Google Scholar
  36. 36.
    Dunne FP, Chowdhury TA, Hartland A, Smith T, Brydon PA, McConkey C, Nicholson HO. Pregnancy outcome in women with insulin-dependent diabetes mellitus complicated by nephropathy. Q J Med 1999;92:451–454.Google Scholar
  37. 37.
    Vaarasmaki M, Hartikainen AL, Anttila M, Pirttiaho H. Out-patient management does not impair outcome of pregnancy in women with type 1 diabetes. Diabetes Res Clin Pract 2000;47:111–117.Google Scholar
  38. 38.
    Cnattingius S, Berne C, Nordstrom ML. Pregnancy outcome and infant mortality in diabetic patients in Sweden. Diabet Med 1994;11:696–700.Google Scholar
  39. 39.
    Group GaDiFS. Multicenter survey of diabetic pregnancy in France. Diabetes Care 1991;14:994–1000.Google Scholar
  40. 40.
    Suhonen L, Hiilesmaa V, Teramo K. Glycaemic control during early pregnancy and fetal malformations in women with type I diabetes mellitus. Diabetologia 2000;43:79–82.Google Scholar
  41. 41.
    Aberg A, Westbom L, Kallen B. Congenital malformations among infants whose mothers had gestational diabetes or preexisting diabetes. Early Hum Dev 2001;61:85–95.Google Scholar
  42. 42.
    Mills JL. Malformations in infants of diabetic mothers. Teratology 1982;25:385–394.Google Scholar
  43. 43.
    Pettitt DJ, Knowler WC, Baird HR, Bennett PH. Gestational diabetes: Infant and maternal complications of pregnancy in relation to third-trimester glucose tolerance in the Pima Indians. Diabetes Care 1980;3:458–464.Google Scholar
  44. 44.
    Comess LJ, Bennett PH, Burch TA, Miller M. Congenital anomalies and diabetes in the Pima Indians of Arizona. Diabetes 1969;18:471–477.Google Scholar
  45. 45.
    Kousseff B. Gestational diabetes mellitus (class A): A human teratogen? Am J Med Genet 1999;83:402–408.Google Scholar
  46. 46.
    Martinez-Frias M, Bermejo E, Rodriguez-Pinilla E, Prieto L, Frias J. Epidemiological analysis of outcomes of pregnancy in gestational diabetic mothers. Am J Med Genet 1998;78:140– 145.Google Scholar
  47. 47.
    Ornoy A, Wolf A, Ratzon N, Greenbaum C, Dulitzky M. Neurodevelopmental outcome at early school age of children born to mothers with gestational diabetes. Arch Dis Child Fetal Neonatal Ed 1999;81:F10–F14.Google Scholar
  48. 48.
    Kousseff BG. Diabetic embryopathy. Curr Opin Pediatr 1999;11:348–352.Google Scholar
  49. 49.
    Persson B, Hanson U. Neonatal morbidities in gestational diabetes mellitus. Diabetes Care 1998;21(suppl 2):B79–B84.Google Scholar
  50. 50.
    Fuhrmann K, Reiher H, Semmler K, Glöckner E. The effect of intensified conventional insulin therapy before and during pregnancy on the malformation rate in offspring of diabetic mothers. Exp Clin Endocrinol Diabetes 1984;83:173–177.Google Scholar
  51. 51.
    Leslie RDG, Pyke DA, John PN, White JM. Hemoglobin A1 in diabetic pregnancy. Lancet 1978;ii:958–959.Google Scholar
  52. 52.
    Miller E, Hare JW, Cloherty JP, Dunn PJ, Gleason RE, Soeldner JS, Kitzmiller JL. Elevated maternal hemoglobin A1c in early pregnancy and major congenital anomalies in infants of diabetic mothers. N Engl J Med 1981;304:1331–1334.Google Scholar
  53. 53.
    Roversi GD, Canussio V, Gargiulo M, Candiani GB. The intensive care of perinatal risk in pregnant diabetics (136 cases): A new therapeutic scheme for the best control of maternal disease. J Perinat Med 1973;1:114–124.Google Scholar
  54. 54.
    Levine AB. Reproductive health in diabetic women. A report of two cases demonstrating the importance of preconception care. J Reprod Med 1998;43:691–692.Google Scholar
  55. 55.
    McElvy SS, Miodovnik M, Rosenn B, Khoury JC, Siddiqi T, Dignan PS, Tsang RC. A focused preconceptional and early pregnancy program in women with type 1 diabetes reduces perinatal mortality and malformation rates to general population levels. J Matern Fetal Med 2000;9:14–20.Google Scholar
  56. 56.
    Mills JL, Baker L, Goldman AS. Malformations in infants of diabetic mothers occur before the seventh gestational week. Implications for treatment. Diabetes 1979;28:292–293.Google Scholar
  57. 57.
    Cockroft DL, Coppola PT. Teratogenic effect of excess glucose on head-fold rat embryos in culture. Teratology 1977;16:141–146.Google Scholar
  58. 58.
    Ellington SKL. In vivo and in vitro studies on the effects of maternal fasting during embryonic organogenesis in the rat. J Reprod Fertil 1980;60:383–388.Google Scholar
  59. 59.
    Moley K, Chi M, Manchester J, McDougal D, Lowry O. Alterations of intraembryonic metabolites in preimplantation mouse embryos exposed to elevated concentrations of glucose: A metabolic explanation for the developmental retardation seen in preimplantation embryos from diabetic animals. Biol Reprod 1996;54:1209–1216.Google Scholar
  60. 60.
    Sadler TW. Effects of maternal diabetes on early embryogenesis. II. Hyperglycemia-induced exencephaly. Teratology 1980;21:349– 356.Google Scholar
  61. 61.
    Forsberg H, Eriksson UJ, Melefors Ö, Welsh N. Betahydroxybutyrate increases reactive oxygen species in late but not in early post implantation embryonic cells in vitro. Diabetes 1997;47:255–262.Google Scholar
  62. 62.
    Horton WEJ, Sadler TW. Effects of maternal diabetes on early embryogenesis. Alterations in morphogenesis produced by the ketone body B-hydroxybutyrate. Diabetes 1983;32:610–616.Google Scholar
  63. 63.
    Hunter ES, Sadler TW, Wynn RE. A potential mechanism of DLbeta-hydroxybutyrate-induced malformations in mouse embryos. Am J Physiol 1987;253:E72–E80.Google Scholar
  64. 64.
    Lewis NJ, Akazawa S, Freinkel N. Teratogenesis from betahydroxybutyrate during organogenesis in rat embryo organ culture and enhancement by subteratogenic glucose. Diabetes 1983;32 (suppl 1):11A.Google Scholar
  65. 65.
    Moore DCP, Stanisstreet M, Clarke CA. Morphological and physiological effects of beta-hydroxybutyrate on rat embryos grown in vitro at different stages. Teratology 1989;40:237–251.Google Scholar
  66. 66.
    Ornoy A, Zaken V, Kohen R. Role of reactive oxygen species (ROS) in the diabetes-induced anomalies in rat embryos in vitro: Reduction in antioxidant enzymes and low-molecular-weight antioxidants( LMWA)maybe the causative factor for increased anomalies. Teratology 1999;60:376–386.Google Scholar
  67. 67.
    Sadler TW, Horton WEJ. Effects of maternal diabetes on early embryogenesis: The role of insulin and insulin therapy. Diabetes 1983;32:1070–1074.Google Scholar
  68. 68.
    Sheehan EA, Beck F, Clarke CA, Stanisstreet M. Effects of betahydroxybutyrate on rat embryos grown in culture. Experientia 1985;41:273–275.Google Scholar
  69. 69.
    Shum L, Sadler TW. Biochemical basis for D, L, betahydroxybutyrate-induced teratogenesis. Teratology 1990;42:553– 556.Google Scholar
  70. 70.
    Shum L, Sadler TW. Embryonic catch-up growth after exposure to the ketone body D, L,-beta-hydroxybutyrate in vitro. Teratology 1988;38:369–379.Google Scholar
  71. 71.
    Eriksson RSM, Thunberg L, Eriksson UJ. Effects of interrupted insulin treatment on fetal outcome of pregnant diabetic rats. Diabetes 1989;38:764–772.Google Scholar
  72. 72.
    Styrud J, Thunberg L, Nybacka O, Eriksson UJ. Correlations between maternal metabolism and deranged development in the offspring of normal and diabetic rats. Pediatr Res 1995;37:343– 353.Google Scholar
  73. 73.
    Eriksson UJ, Borg LAH. Diabetes and embryonic malformations. Role of substrate-induced free-oxygen radical production for dysmorphogenesis in cultured rat embryos. Diabetes 1993;42:411– 419.Google Scholar
  74. 74.
    Baker L, Piddington R, Goldman A, Egler J, Moehring J. Myoinositol and prostaglandins reverse the glucose inhibition of neural tube fusion in cultured mouse embryos. Diabetologia 1990;33:593–596.Google Scholar
  75. 75.
    Hashimoto M, Akazawa S, Akazawa M, Akashi M, Yamamoto H, Maeda Y, Yamaguchi Y, Yamasaki H, Tahara D, Nakanishi T, Nagataki S. Effects of hyperglycaemia on sorbitol and myoinositol contents of cultured embryos: Treatment with aldose reductase inhibitor and myo-inositol supplementation. Diabetologia 1990;33:597–602.Google Scholar
  76. 76.
    Hod M, Star S, Passonneau JV, Unterman TG, Freinkel N. Effect of hyperglycemia on sorbitol and myo-inositol content of cultured rat conceptus: Failure of aldose reductase inhibitors to modify myoinositol depletion and dysmorphogenesis. Biochem Biophys Res Commun 1986;140:974–980.Google Scholar
  77. 77.
    Hod M, Star S, Passonneau J, Unterman TG, Freinkel N. Glucose induced dysmorphogenesis in the cultured rat conceptus: Prevention by supplementation with myo-inositol. Isr J Med Sci 1990;26:541–544.Google Scholar
  78. 78.
    Sussman I, Matschinsky FM. Diabetes affects sorbitol and myoinositol levels of neuroectodermal tissue during embryogenesis in rat. Diabetes 1988;37:974–981.Google Scholar
  79. 79.
    Weigensberg MJ, Garcia-Palmer F-J, Freinkel N. Uptake of myoinositol by early-somite rat conceptus. Transport kinetics and effects of hyperglycemia. Diabetes 1990;39:575–582.Google Scholar
  80. 80.
    Engström E, Haglund A, Eriksson UJ. Effects of maternal diabetes or in vitro hyperglycemia on uptake of palmitic and arachidonic acid by rat embryos. Pediatr Res 1991;30:150–153.Google Scholar
  81. 81.
    Pinter E, Reece EA, Leranth CS, Sanyal MK, Hobbins JC, Mahoney MJ, Naftolin F. Yolk sac failure in embryopathy due to hyperglycemia: Ultrastructural analysis of yolk sac differentiation associated with embryopathy in rat conceptuses under hyperglycemic conditions. Teratology 1986;33:73–84.Google Scholar
  82. 82.
    Eriksson UJ, Borg LAH. Protection by free oxygen radical scavenging enzymes against glucose-induced embryonic malformations in vitro. Diabetologia 1991;34:325–331.Google Scholar
  83. 83.
    Hagay ZJ, Weiss Y, Zusman I, Peled-Kamar M, Reece EA, Eriksson UJ, Groner Y. Prevention of diabetes-associated embryopathy by overexpression of the free radical scavenger copper zinc superoxide dismutase in transgenic mouse embryos. Am J Obstet Gynecol 1995;173:1036–1041.Google Scholar
  84. 84.
    Eriksson UJ, Simán CM. Pregnant diabetic rats fed the antioxidant butylated hydroxytoluene show decreased occurrence of malformations in the offspring. Diabetes 1996;45:1497–1502.Google Scholar
  85. 85.
    Eriksson UJ, Naeser P, Brolin SE. Increased accumulation of sorbitol in offspring of manifest diabetic rats. Diabetes 1986;35:1356–1363.Google Scholar
  86. 86.
    Eriksson UJ, Brolin SE, Naeser P. Influence of sorbitol accumulation on growth and development of embryos cultured in elevated levels of glucose and fructose. Diabetes Res 1989;11:27–32.Google Scholar
  87. 87.
    Eriksson UJ, Wentzel P, Minhas HS, Thornalley PJ. Teratogenicity of 3-deoxyglucosone and diabetic embryopathy. Diabetes 1998;47:1960–1966.Google Scholar
  88. 88.
    Thornalley PJ. Advanced glycation and the development of diabetic complications. Unifying the involvement of glucose, methylglyoxal and oxidative stress. Endocrinol Metab 1996;3:149–166.Google Scholar
  89. 89.
    Wolff SP, Jiang ZY, Hunt JV. Protein glycation and oxidative stress in diabetes mellitus and ageing. Free Radic Biol Med 1991;10:339– 352.Google Scholar
  90. 90.
    Cederberg J, Eriksson UJ. Decreased catalase activity in malformation-prone embryos of diabetic rats. Teratology 1997;56:350–357.Google Scholar
  91. 91.
    Cederberg J, Galli J, Luthman H, Eriksson UJ. Increased mRNA levels of Mn-SOD and catalase in embryos of diabetic rats from a malformation-resistant strain. Diabetes 2000;49:101–107.Google Scholar
  92. 92.
    Eriksson UJ. Importance of genetic predisposition and maternal environment for the occurrence of congenital malformations in offspring of diabetic rats. Teratology 1988;37:365–374.Google Scholar
  93. 93.
    Otani H, Tanaka O, Tatewaki R, Naora H, Yoneyama T. Diabetic environment and genetic predisposition as causes of congenital malformations in NOD mouse embryos. Diabetes 1991;40:1245–1250.Google Scholar
  94. 94.
    Eriksson UJ, den Bieman M, Prins JB, van Zutphen LFM. Differences in susceptibility for diabetes-induced malformations in separated rat colonies of common origin. In: 4th FELASA Symposium. Lyon, France: FONDATION MARCEL M´ERIEUX; 1990: 53–57.Google Scholar
  95. 95.
    Karlsson K, Kjellmer I. The outcome of diabetic pregnancies in relation to the mother's blood sugar level. Am J Obstet Gynecol 1972;112:213–230.Google Scholar
  96. 96.
    Greene MF, Hare JW, Cloherty JP, Benacerraf BR, Soeldner JS. First-trimester hemoglobin A1 and risk for major malformation and spontaneous abortion in diabetic pregnancy. Teratology 1989;39:225–231.Google Scholar
  97. 97.
    Jovanovic L, Druzin M, Peterson CM. Effects of euglycemia on the outcome of pregnancy in insulin-dependent diabetic women as compared with normal control subjects. Am J Med 1980;68:105– 112.Google Scholar
  98. 98.
    Lucas MJ, Leveno KJ, Williams ML, Raskin P, Whalley PJ. Early pregnancy glycosylated hemoglobin, severity of diabetes, and fetal malformations. Am J Obstet Gynecol 1989;161:426–431.Google Scholar
  99. 99.
    Mølsted-Pedersen L. Pregnancy and diabetes: A survey. Acta Endocrinol Suppls (Copenh) 1980;238:13–19.Google Scholar
  100. 100.
    Olofsson P, Liedholm H, Sartor G, Sjöberg NO, Svenningsen NW, Ursing D. Diabetes and pregnancy. A 21 year Swedish material. Acta Obstet Gynecol Scand Suppl 1984;122:1–62.Google Scholar
  101. 101.
    Persson B, Heding LG, Lunell NO, Pschera H, Stangenberg M, Wagner J. Fetal beta cell function in diabetic pregnancy. Amniotic fluid concentrations of proinsulin, insulin, and C-peptide during the last trimester of pregnancy. Am J Obstet Gynecol 1982;144:455– 459.Google Scholar
  102. 102.
    Reid M, Hadden D, Harley JM, Halliday HL, McClure BG. Fetal malformations in diabetics with high haemoglobin A1c in early pregnancy. Br Med J 1984;289:1001.Google Scholar
  103. 103.
    Ylinen K, Aula P, Stenman UH, Kesaniemi-Kuokkanen T, Teramo K. Risk of minor and major fetal malformations in diabetics with high haemoglobin A1c values in early pregnancy. Br Med J 1984;289:345–346.Google Scholar
  104. 104.
    Artal R, Golde SH, Dorey F, McClellan SN, Gratacos J, Lirette T, Montoro M, Wu PY, Anderson B, Mestman J. The effect of plasma glucose variability on neonatal outcome in the pregnant diabetic patient. Am J Obstet Gynecol 1983;147:537–541.Google Scholar
  105. 105.
    Jovanovic L, Peterson CM. Optimal insulin delivery for pregnant diabetic patient. Diabetes Care 1982;5(suppl 1):24–37.Google Scholar
  106. 106.
    Wright AD, Taylor KG, Nicholson HO, Insley J, Evans SE. Maternal blood glucose control and outcome of diabetic pregnancy. Post grad Med J 1982;58:411–414.Google Scholar
  107. 107.
    Fine EL, Horal M, Chang TI, Fortin G, Loeken MR. Evidence that elevated glucose causes altered gene expression, apoptosis, and neural tube defects in a mouse model of diabetic pregnancy. Diabetes 1999;48:2454–2462.Google Scholar
  108. 108.
    Malaisse-Lagae F, Vanhoutte C, Rypens F, Louryan S, Malaisse WJ. Anomalies of fetal development in GK rats. Acta Diabetol 1997;34:55–60.Google Scholar
  109. 109.
    Hunter SK, Wang Y, Weiner CP, Niebyl J. Encapsulated betaislet cells as a bioartificial pancreas to treat insulin-dependent diabetes during pregnancy. Am J Obstet Gynecol 1997;177:746– 752.Google Scholar
  110. 110.
    Torchinsky A, Toder V, Carp H, Orenstein H, Fein A. In vivo evidence for the existence of a threshold for hyperglycemia-induced major fetal malformations: Relevance to the etiology of diabetic teratogenesis. Early Pregnancy 1997;3:27–33.Google Scholar
  111. 111.
    Sivan E, Lee Y, Wu Y, Reece E. Free radical scavenging enzymes in fetal dysmorphogenesis among offspring of diabetic rats. Teratology 1997;56:343–349.Google Scholar
  112. 112.
    Akashi M, Akazawa S, Akazawa M, Trocino R, Hashimoto M, Maeda Y, Yamamoto H, Kawasaki E, Takino H, Yokota A, Nagataki S. Effects of insulin and myo-inositol on embryo growth and development during early organogenesis in streptozocininduced diabetic rats. Diabetes 1991;40:1574–1579.Google Scholar
  113. 113.
    Brownscheidle M, Wootten V, Mathieu MH, Davis DL, Hofman IA. The effects of maternal diabetes on fetal maturation and neonatal health. Metabolism 1983;32(suppl 1):148–155.Google Scholar
  114. 114.
    Chartrel NC, Clabaut MT, Boismare FA, Schrub JC. Uteroplacental hemodynamic disturbances in establishment of fetal growth retardation in streptozocin-induced diabetic rats. Diabetes 1990;39:743–746.Google Scholar
  115. 115.
    Clabaut M, Stirnemann B, Bouftila B, Robert I. Beneficial effect induced by a beta-adrenoreceptor blocker on fetal growth in streptozotocin-diabetic rats. Biol Neonate 1997;71:171–180.Google Scholar
  116. 116.
    Deuchar EM. Embryonic malformation in rats, resulting from maternal diabetes: Preliminary observations. J Embryol Exp Morphol 1977;41:93–99.Google Scholar
  117. 117.
    Diamond MP, Moley KH, Pellicer A, Vaughn WK, DeCherney AH. Effects of streptozotocin-and alloxan-induced diabetes mellitus on mouse follicular and early embryo development. J Reprod Fertil 1989;86:1–10.Google Scholar
  118. 118.
    Endo A. Teratogenesis in diabetic mice treated with alloxan prior to conception. Arch Environ Health 1966;12:492–500.Google Scholar
  119. 119.
    Eriksson UJ, Bone AJ, Turnbull DM, Baird JD. Timed interruption of insulin therapy in diabetic BB/E rat pregnancy: Effect on maternal metabolism and fetal outcome. Acta Endocrinol (Copenh) 1989;120:800–810.Google Scholar
  120. 120.
    Eriksson UJ, Dahlstrom E, Larsson KS, Hellerstrom C. Increased incidence of congenital malformations in the offspring of diabetic rats and their prevention by maternal insulin therapy. Diabetes 1982;31:1–6.Google Scholar
  121. 121.
    Eriksson UJ. Congenital malformations in diabetic animal modelsùA review. Diabetes Res 1984;1:57–66.Google Scholar
  122. 122.
    Eriksson UJ, Dahlström VE, Lithell HO. Diabetes and pregnancy: Influence of genetic background and maternal diabetic state on the incidence of skeletal malformations in the fetal rat. Acta Endocrinol (Copenh) 1986;112(suppl 277):66–73.Google Scholar
  123. 123.
    Eriksson UJ, Fredén M. Maternal diabetes in the rat enhances the transfer of glucose to the early embryo. Diabetes Res Clin Pract 1988;5(suppl 1):S453.Google Scholar
  124. 124.
    Funaki K, Mikamo K. Developmental-stage-dependent teratogenic effects of maternal spontaneous diabetes in the Chinese hamster. Diabetes 1983;32:637–643.Google Scholar
  125. 125.
    Giavini E, Broccia ML, Prati M, Roversi GD, Vismara C. Effects of streptozotocin-induced diabetes on fetal development of the rat. Teratology 1986;34:81–88.Google Scholar
  126. 126.
    Giavini E, Prati M, Roversi G. Congenital malformations in the offspring of diabetic rats: Exerimental study on the influence of the diet composition and magnesium intake. Biol Neonate 1990;57:207– 217.Google Scholar
  127. 127.
    Goldman AS, Baker L, Piddington R, Marx B, Herold R, Egler J. Hyperglycemia-induced teratogenesis is mediated by a functional deficiency of arachidonic acid. Proc Natl Acad Sci USA 1985;82:8227–8231.Google Scholar
  128. 128.
    Johansson B, Meyerson B, Eriksson UJ. Behavioural effects of an intrauterine or neonatal diabetic environment in the rat. Biol Neonate 1991;59:226–235.Google Scholar
  129. 129.
    Kim JN, Runge W, Wells LJ, Lazarow A. Effects of experimental diabetes on the offspring of the rat. Fetal growth, birth, weight, gestation period and fetal mortality. Diabetes 1960;9:396–404.Google Scholar
  130. 130.
    Lee AT, Plump A, DeSimone C, Cerami A, Bucala R. A role for DNA mutations in diabetes-associated teratogenesis in transgenic embryos. Diabetes 1995;44:20–24.Google Scholar
  131. 131.
    Lee AT, Reis D, Eriksson UJ. Hyperglycemia induced embryonic dysmorphogenesis correlates with genomic DNA mutation frequency in vitro and in vivo. Diabetes 1999;48:371–376.Google Scholar
  132. 132.
    Ornoy A, Kimyagarov D, Yaffe P, Abir R, Raz I, Kohen R. Role of reactive oxygen species in diabetes-induced embryotoxicity: Studies on pre-implantation mouse embryos culture in serum from diabetic pregnant women. Isr J Med Sci 1996;32:1066–1073.Google Scholar
  133. 133.
    Pampfer S, de Hertogh R, Vanderheyden I, Michiels B, Vercheval M. Decreased inner cell mass proportion in blastocysts from diabetic rats. Diabetes 1990;39:471–476.Google Scholar
  134. 134.
    Pampfer S, Vanderheyden I, Wuu YD, Baufays L, Maillet O, De Hertogh R. A possible role for TNF-alpha in early embryopathy associated with maternal diabetes in the rat. Diabetes 1995;44:531– 536.Google Scholar
  135. 135.
    Phelan SA, Ito M, Loeken MR. Neural tube defects in embryos of diabetic mice: Role of the Pax-3 gene and apoptosis. Diabetes 1997;46:1189–1197.Google Scholar
  136. 136.
    Simán CM, Eriksson UJ. Vitamin E decreases the occurrence of malformations in the offspring of diabetic rats. Diabetes 1997;46:1054–1061.Google Scholar
  137. 137.
    Simán CM, Eriksson UJ. Vitamin C supplementation of the maternal diet reduces the rate of malformation in the offspring of diabetic rats. Diabetologia 1997;40:1416–1424.Google Scholar
  138. 138.
    Sivan E, Reece EA, Wu YK, Homko CJ, Polansky M, Borenstein M. Dietary vitamin E prophylaxis and diabetic embryopathy: Morphologic and biochemical analysis. Am J Obstet Gynecol 1996;175:793–799.Google Scholar
  139. 139.
    Unger E, Eriksson UJ. Regionally disturbed production of cartilage proteoglycans in malformed fetuses from diabetic rats. Diabetologia 1992;35:517–521.Google Scholar
  140. 140.
    Viana M, Herrera E, Bonet B. Teratogenic effects of diabetes mellitus in the rat. Prevention with vitamin E. Diabetologia 1996;39:1041–1046.Google Scholar
  141. 141.
    Yang X, Borg LAH, Eriksson UJ. Altered mitochondrial morphology of rat embryos in diabetic pregnancy. Anat Rec 1995;241:255– 267.Google Scholar
  142. 142.
    Yang X, Borg LAH, Simán CM, Eriksson UJ. Maternal antioxidant treatments prevent diabetes-induced alterations of mitochondrial morphology in rat embryos. Anat Rec 1998;251:303–315.Google Scholar
  143. 143.
    Zusman I, Yaffe P, Ornoy A. The effects of high-sucrose diets and of maternal diabetes on the ultrastructure of the visceral yolk sac endoderm in rat embryos developing in vivo and in vitro. Acta Anat 1987;128:11–18.Google Scholar
  144. 144.
    Moley KH, Vaughn WK, DeCherney AH, Diamond MP. Effect of diabetes mellitus on mouse pre-implantation embryo development. J Reprod Fertil 1991;93:325–332.Google Scholar
  145. 145.
    De Hertogh R, Vanderheyden I, Pampfer S, Robin D, Delcourt J. Maternal insulin treatment improves pre-implantation embryo development in diabetic rats. Diabetologia 1992;35:406–408.Google Scholar
  146. 146.
    Hunter S, Wang Y, Rodgers V. Bioartificial pancreas use in diabetic pregnancy. ASAIO J 1999;45:13–17.Google Scholar
  147. 147.
    Machado AF, Zimmerman EF, Hovland DN, Weiss R, Collins MD. Diabetic embryopathy in C57BL/6J mice. Altered fetal sex ratio and impact of the splotch allele. Diabetes 2001;50:1193–1199.Google Scholar
  148. 148.
    Maeyama K, Kosaki R, Yoshihashi H, Casey B, Kosaki K. Mutation analysis of left-right axis determining genes in NOD and ICR, strains susceptible to maternal diabetes. Teratology 2001;63:119– 126.Google Scholar
  149. 149.
    Moley K, Chi M, Knudson C, Korsmeyer S, Mueckler M. Hyperglycemia induces apoptosis in pre-implantation embryos through cell death effector pathways. Nat Med 1998;4:1421–1424.Google Scholar
  150. 150.
    Moley KH, Chi MM, Mueckler MM. Maternal hyperglycemia alters glucose transport and utilization in mouse preimplantation embryos. Am J Physiol 1998;275:E38–E47.Google Scholar
  151. 151.
    Pinter E, Reece EA, Leranth CZ, Garcia-Segura M, Hobbins JC, Mahoney MJ. Arachidonic acid prevents hyperglycemiaassociated yolk sac damage and embryopathy. AmJ Obstet Gynecol 1986;155:691–702.Google Scholar
  152. 152.
    Strieleman PJ, Connors MA, Metzger BE. Phosphoinositide metabolism in the developing conceptus. Effects of hyperglycemia and scyllo-inositol in rat embryo culture. Diabetes 1992;41:989– 997.Google Scholar
  153. 153.
    Trocino RA, Akazawa S, Ishibashi M, Matsumoto K, Matsuo H, Yamamoto H, Goto S, Urata Y, Kondo T, Nagataki S. Significance of glutathione depletion and oxidative stress in early embryogenesis in glucose-induced rat embryo culture. Diabetes 1995;44:992– 998.Google Scholar
  154. 154.
    Wentzel P, Eriksson UJ. Antioxidants diminish developmental damage induced by high glucose and cyclooxygenase inhibitors in rat embryos in vitro. Diabetes 1998;47:677–684.Google Scholar
  155. 155.
    Zaken V, Kohen R, Ornoy A. Vitamins C and E improve rat embryonic antioxidant defense mechanism in diabetic culture medium. Teratology 2001;64:33–44.Google Scholar
  156. 156.
    Sadler TW. Effects of maternal diabetes on early embryogenesis. I. The teratogenic potential of diabetic serum. Teratology 1980;21:339–347.Google Scholar
  157. 157.
    Ornoy A, Zusman I, Cohen AM, Shafrir E. Effects of sera from Cohen, genetically determined diabetic rats, streptozotocin diabetic rats and sucrose fed rats on in vitro development of early somite rat embryos. Diabetes Res 1986;3:43–51.Google Scholar
  158. 158.
    Sadler TW, Phillips LS, Balkan W, Goldstein S. Somatomedin inhibitors from diabetic rat serum alter growth and development of mouse embryos in culture. Diabetes 1986;35:861–865.Google Scholar
  159. 159.
    Rashbass P, Ellington SKL. Development of rat embryos cultured in serum prepared from rats with streptozotocin-induced diabetes. Teratology 1988;37:51–61.Google Scholar
  160. 160.
    Mulder EJ, Brader LJ, Verhoef A, Piersma AH, Visser GH, Peters PW. Whole rat embryo culture in serum from insulin-dependent (Type 1) diabetic women. Toxicol Vitro 1989;3:221–226.Google Scholar
  161. 161.
    Zusman I, Yaffe P, Raz I, Bar-On H, Ornoy A. Effects of human diabetic serum on the in vitro development of early somite rat embryos. Teratology 1989;39:85–92.Google Scholar
  162. 162.
    Styrud J, Eriksson UJ. Development of rat embryos in culture media containing different concentrations of normal and diabetic rat serum. Teratology 1992;46:473–483.Google Scholar
  163. 163.
    Goto MP, Goldman AS, Uhing MR. PGE2 prevents anomalies induced by hyperglycemia or diabetic serum in mouse embryos. Diabetes 1992;41:1644–1650.Google Scholar
  164. 164.
    Buchanan TA, Denno KM, Sipos GF, Sadler TW. Diabetic teratogenesis. In vitro evidence for a multifactorial etiology with little contribution from glucose per se. Diabetes 1994;43:656–660.Google Scholar
  165. 165.
    Wentzel P, Eriksson UJ. Insulin treatment fails to abolish the teratogenic potential of serum from diabetic rats. Eur J Endocrinol 1996;134:459–446.Google Scholar
  166. 166.
    Wentzel P, Thunberg L, Eriksson UJ. Teratogenic effect of diabetic serum is prevented by supplementation of superoxide dismutase and N-acetylcysteine in rat embryo culture. Diabetologia 1997;40:7–14.Google Scholar
  167. 167.
    Mills JL, Knopp RH, Simpson JL, Jovanovic-Peterson L, Metzger BE, Holmes LB, Aarons JH, Brown Z, Reed GF, Bieber FR, Van Allen M, Holzman I, Ober C, Peterson CM, Withiam MJ, Duckles A, Mueller-Heubach E, Polk BF, National Institute of Child Health and Human Development Diabetes in Early Pregnancy Study Group. Lack of relation of increased malformation rates in infants of diabetic mothers to glycemic control during organogenesis. N Engl J Med 1988;318:671–676.Google Scholar
  168. 168.
    Carlsten A, Hallgren B, Jagenburg R, Svanborg A, Werko L. Amino acids and free fatty acids in plasma in diabetes. I. The effect of insulin on the arterial levels. Acta Med Scand 1966;179:361–370.Google Scholar
  169. 169.
    Alberti KG, Dornhorst A, Rowe AS. Metabolic rhythms in normal and diabetic man. Studies in insulin-treated diabetes. Isr J Med Sci 1975;11:571–580.Google Scholar
  170. 170.
    Zinman B, Stokes EF, Albisser AM, Hanna AK, Minuk HL, Stein AN, Leibel BS, Marliss EB. The metabolic response to glycemic control by the artificial pancreas in diabetic man. Metabolism 1979;28:511–518.Google Scholar
  171. 171.
    Calabrese G, Bueti A, Santeusanio F, Giombolini A, Zega G, Angeletti G, Cartechini MG, Brunetti P. Continuous subcutaneous insulin infusion treatment in insulin-dependent diabetic patients: A comparison with conventional optimized treatment in a long-term study. Diabetes Care 1982;5:457–465.Google Scholar
  172. 172.
    Nosadini R, Noy GA, Nattrass M, Alberti KG, Johnston DG, Home PD, Orskov H. The metabolic and hormonal response to acute normoglycaemia in type 1 (insulin-dependent) diabetes: Studies with a glucose controlled insulin infusion system (artificial endocrine pancreas). Diabetologia 1982;23:220–228.Google Scholar
  173. 173.
    Capaldo B, Home PD, Massi-Benedetti M, Worth R, Cook DB, Heaton A, Alberti KG. The response of blood intermediary metabolite levels to 24 hours treatment with a blood glucose-controlled insulin infusion system in type 1 diabetes. Diabetes Res 1984;1:187– 193.Google Scholar
  174. 174.
    Beck-Nielsen H, Richelsen B, Schwartz Sorensen N, Hother Nielsen O. Insulin pump treatment: Effect on glucose homeostasis, metabolites, hormones, insulin antibodies and quality of life. Diabetes Res 1985;2:37–43.Google Scholar
  175. 175.
    Marshall SM, Taylor R, Home PD, Alberti KG. Intermediary metabolism, insulin sensitivity and insulin receptor status under comparable long-term therapy with insulin injections and continuous subcutaneous insulin infusion. Acta Endocrinol (Copenh) 1988;117:417–427.Google Scholar
  176. 176.
    Reece EA, Khandelwal M, Wu YK, Borenstein M. Dietary intake of myo-inositol and neural tube defects in offspring of diabetic rats. Am J Obstet Gynecol 1997;176:536–539.Google Scholar
  177. 177.
    Reece AE, Wu YK. Prevention of diabetic embryopathy in offspring of diabetic rats with use of a cocktail of deficient substrates and an antioxidant. Am J Obstet Gynecol 1997;176:790– 798.Google Scholar
  178. 178.
    Khandelwal M, Reece EA, Wu YK, Borenstein M. Dietary myo-inositol therapy in hyperglycemia-induced embryopathy. Teratology 1998;57:79–84.Google Scholar
  179. 179.
    Kinalski M, Sledziewski A, Telejko B, Zarzycki W, Kinalska I. Antioxidant therapy and streptozotocin-induced diabetes in pregnant rats. Acta Diabetol 1999;36:113–117.Google Scholar
  180. 180.
    Wiznitzer A, Ayalon N, Hershkovitz R, Khamaisi M, Reece EA, Trischler H, Bashan N. Lipoic acid prevention of neural tube defects in offspring of rats with streptozocin-induced diabetes. Am J Obstet Gynecol 1999;180:188–193.Google Scholar
  181. 181.
    Strieleman PJ, Metzger BE. Glucose and scyllo-inositol impair phosphoinositide hydrolysis in the 10.5-day cultured rat conceptus: A role in dysmorphogenesis? Teratology 1993;48:267–278.Google Scholar
  182. 182.
    Baker L, Piddington R. Diabetic embryopathy: A selective review of recent trends. J Diabetes Complications 1993;7:204–212.Google Scholar
  183. 183.
    Lapetina EG. Regulation of arachidonic acid production: Role of phospholipases C and A2. Trends Pharmacol Sci 1982;3:115– 118.Google Scholar
  184. 184.
    Reece EA, Wu YK, Wiznitzer A, Homko C, Yao J, Borenstein M, Sloskey G. Dietary polyunsaturated fatty acid prevents malformations in offspring of diabetic rats. Am J Obstet Gynecol 1996;175:818–823.Google Scholar
  185. 185.
    Wiznitzer A, Furman B, Mazor M, Reece EA. The role of prostanoids in the development of diabetic embryopathy. Semin Reprod Endocrinol 1999;17:175–181.Google Scholar
  186. 186.
    Piddington R, Joyce J, Dhanasekaran P, Baker L. Diabetes mellitus affects prostaglandin E2 levels in mouse embryos during neurulation. Diabetologia 1996;39:915–920.Google Scholar
  187. 187.
    Wentzel P, Welsh N, Eriksson UJ. Developmental damage, increased lipid peroxidation, diminished cyclooxygenase-2 gene expression, and lowered PGE2 levels in rat embryos exposed to a diabetic environment. Diabetes 1999;48:813–820.Google Scholar
  188. 188.
    Schoenfeld A, Erman A, Warchaizer S, Ovadia J, Bonner G, Hod M, Bonner G. Yolk sac concentration of prostaglandin E2 in diabetic pregnancy: Further clues to the etiology of diabetic embryopathy. Prostaglandins 1995;50:121–126.Google Scholar
  189. 189.
    Pinter E, Reece EA, Ogburn PJ, Turner S, Hobbins JC, Mahoney MJ, Naftolin F. Fatty acid content of yolk sac and embryo in hyperglycemia-induced embryopathy and effect of arachidonic acid supplementation. Am J Obstet Gynecol 1988;159:1484–1490.Google Scholar
  190. 190.
    Oberley LW. Free radicals and diabetes. Free Radic Biol Med 1988;5:113–124.Google Scholar
  191. 191.
    Gillery P, Monboisse JC, Maquart FX, Borel JP. Does oxygen free radical increased formation explain long term complications of diabetes mellitus? Med Hypotheses 1989;29:47–50.Google Scholar
  192. 192.
    Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes 1991;40:405–412.Google Scholar
  193. 193.
    Schmidt AM, Weidman E, Lalla E, Yan SD, Hori O, Cao R, Brett JG, Lamster IB. Advanced glycation end products (AGEs) induce oxidant stress in the gingiva: A potential mechanism underlying accelerated periodontal disease associated with diabetes. J Periodontal Res 1996;31:508–515.Google Scholar
  194. 194.
    West IC. Radicals and oxidative stress in diabetes. Diabet Med 2000;17:171–180.Google Scholar
  195. 195.
    Palmer AM, Thomas CR, Gopaul N, Dhir S, Änggård EE, Poston L, Tribe RM. Dietary antioxidant supplementation reduces lipid peroxidation but impairs vascular function in small mesenteric arteries of the streptozotocin-diabetic rat. Diabetologia 1998;41:148–156.Google Scholar
  196. 196.
    Cederberg J, Basu S, Eriksson UJ. Increased rate of lipid peroxidation and protein carbonylation in experimental diabetic pregnancy. Diabetologia 2001;44:766–774.Google Scholar
  197. 197.
    Sano T, Umeda F, Hashimoto T, Nawata H, Utsumi H. Oxidative stress measurements by in vivo electron spin resonance spectroscopy in rats with streptozotocin-induced diabetes. Diabetologia 1998;41:1355–1360.Google Scholar
  198. 198.
    Cederberg J, Siman CM, Eriksson UJ. Combined treatment with vitamin E and vitamin C decreases oxidative stress and improves fetal outcome in experimental diabetic pregnancy. Pediatr Res 2001;49:755–762.Google Scholar
  199. 199.
    Elangovan V, Shohami E, Gati I, Kohen R. Increased hepatic lipid soluble antioxidant capacity as compared to other organs of streptozotocin-induced diabetic rats: A cyclic voltammetry study. Free Radic Res 2000;32:125–134.Google Scholar
  200. 200.
    Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP, Giardino I, Brownlee M. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 2000;404:787–790.Google Scholar
  201. 201.
    Yang X, Borg LAH, Eriksson UJ. Altered metabolism and superoxide generation in neural tissue of rat embryos exposed to high glucose. Am J Physiol 1997;272:E173–E180.Google Scholar
  202. 202.
    Suzuki N, Svensson K, Eriksson UJ. High glucose concentration inhibits migration of rat cranial neural crest cells in vitro. Diabetologia 1996;39:401–411.Google Scholar
  203. 203.
    Forsberg H, Eriksson UJ, Welsh N. Apoptosis in embryos of diabetic rats. Pharmacol Toxicol 1998;83:104–111.Google Scholar
  204. 204.
    Viana M, Aruoma OI, Herrera E, Bonet B. Oxidative damage in pregnant diabetic rats and their embryos. Free Radic Biol Med 2000;29:1115–1121.Google Scholar
  205. 205.
    Simán CM, Gittenberger-De Groot AC, Wisse B, Eriksson UJ. Malformations in offspring of diabetic rats: Morphometric analysis of neural crest-derived organs and effects of maternal vitamin E treatment. Teratology 2000;61:355–367.Google Scholar
  206. 206.
    Sakamaki H, Akazawa S, Ishibashi M, Izumino K, Takino H, Yamasaki H, Yamaguchi Y, Goto S, Urata Y, Kondo T, Nagataki S. Significance of glutathione-dependent antioxidant system in diabetes-induced embryonic malformations. Diabetes 1999;48:1138–1144.Google Scholar
  207. 207.
    Loeken MR, Horal M. Regulation of transcription and morphogenesis by glucosamine: Does hexosamine flux mediate the molecular effects of high glucose metabolism on embryogenesis? Diabetes 2000;49(suppl 1):A274.Google Scholar
  208. 208.
    Horton WE, Sadler TW. Mitochondrial alterations in embryos exposed to beta-hydroxybutyrate in whole embryo culture. Anat Rec 1985;213:94–101.Google Scholar
  209. 209.
    Menegola E, Broccia ML, Prati M, Ricolfi R, Giavini E. Glutathione status in diabetes-induced embryopathies. Biol Neonate 1996;69:293–297.Google Scholar
  210. 210.
    Ishibashi M, Akazawa S, Sakamaki H, Matsumoto K, Yamasaki H, Yamaguchi Y, Goto S, Urata Y, Kondo T, Nagataki S. Oxygen-induced embryopathy and the significance of glutathione-dependent antioxidant system in the rat embryo during early organogenesis. Free Radic Biol Med 1997;22:447–454.Google Scholar
  211. 211.
    Davis WL, Crawford LA, Cooper OJ, Farmer GR, Thomas DL, Freeman BL. Ethanol induces the generation of reactive free radicals by neural crest cells in vitro. J Craniofac Genet Dev Biol 1990;10:277–293.Google Scholar
  212. 212.
    Chen S-Y, Sulik KK. Free radicals and ethanol-induced cytotoxicity in neural crest cells. Alcohol Clin Exp Res 1996;20:1071–1076.Google Scholar
  213. 213.
    Jenkinson PC, Anderson D, Gangolli SD. Malformations induced in cultured rat embryos by enzymically generated active oxygen species. Teratog Carcinog Mutagen 1986;6:547–554.Google Scholar
  214. 214.
    Anderson D, Francis AJ. The modulating effects of antioxidants in rat embryos and Sertoli cells in culture. Basic Life Sci 1993;61:189– 200.Google Scholar
  215. 215.
    Winn LM, Wells PG. Phenytoin-initiated DNA oxidation in murine embryo culture, and embryoprotection by the antioxidative enzymes superoxide dismutase and catalase: Evidence for reactive oxygen species mediated DNA oxidation in the molecular mechanism of phenytoin teratogenecity. Mol Pharmacol 1995;48:112– 120.Google Scholar
  216. 216.
    Winn LM, Wells PG. Maternal administration of superoxide dismutase and catalase in phenytoin teratogenicity. Free Radic Biol Med 1999;26:266–274.Google Scholar
  217. 217.
    Kotch LE, Chen S-E, Sulik KK. Ethanol-induced teratogenesis: Free radical damage as a possible mechanism. Teratology 1995;52:128–136.Google Scholar
  218. 218.
    Parman T, Wiley MJ, Wells PG. Free radical-mediated oxidative DNA damage in the mechanism of thalidomide teratogenicity. Nat Med 1999;5:582–585.Google Scholar
  219. 219.
    Hansen JM, Harris KK, Philbert MA, Harris C. Thalidomide modulates nuclear redox status and preferentially depletes glutathione in rabbit limb versus rat limb. J Pharmacol Exp Ther 2002;300:768–776.Google Scholar
  220. 220.
    Eriksson UJ. Oxidative DNA damage and embryo development. (Letter). Nat Med 1999;5:715.Google Scholar
  221. 221.
    Adams MM, Mulinare J, Dooley K. Risk factors for conotruncal cardiac defects in Atlanta. J Am Coll Cardiol 1989;14:432– 442.Google Scholar
  222. 222.
    Khoury MJ, Becerra JE, Cordero JF, Erickson JD. Clinicalepidemiologic assessment of pattern of birth defects associated with human teratogens: Application to diabetic embryopathy. Pediatrics 1989;84:658–665.Google Scholar
  223. 223.
    Gonzalez A, Krassikoff N, Gilbert-Barness EF. Polyasplenia complex with mesocardia and renal agenesis in an infant of a diabetic mother. Am J Med Genet 1989;32:457–460.Google Scholar
  224. 224.
    Ramos-Arroyo MA, Rodrigues-Pinilla E, Cordero JF. Maternal diabetes: The risk for specific birth defects. Eur J Epidemiol 1992;8:503–508.Google Scholar
  225. 225.
    Martínez-Frias ML. Epidemiological analysis of outcomes of pregnancy in diabetic mothers: Identification of the most characteristic and most frequent congenital anomalies. Am J Med Genet 1994;51:108–113.Google Scholar
  226. 226.
    Meyer-Whittkopf M, Simpson JM, Sharland GK. Incidence of congenital heart defects in fetuses of diabetic mothers: A retrospective study of 326 cases. Ultrasound Obstet Gynecol 1996;8:8–10.Google Scholar
  227. 227.
    Lynch SA, Wright C. Sirenomelia, limb reduction defects, cardiovascular malformation, renal agenesis in an infant born to a diabetic mother. Clin Dysmorphol 1997;6:75–80.Google Scholar
  228. 228.
    Ziereisen F, Courtens W, Clercx A, Perlmutter N. Maternal diabetes and fetal malformations: A case associating cardiovascular, facial and skeletal malformations. Pediatr Radiol 1997;27:945– 947.Google Scholar
  229. 229.
    Ewart-Toland A, Yankowitz J, Winder A, Imagire R, Cox VA, Aylsworth AS, Golabi M. Oculoauriculovertebral abnormalities in children of diabetic mothers. Am J Med Genet 2000;90:303–309.Google Scholar
  230. 230.
    Gosseye S, Golaire MC, Verellen G, van Lierde M, Claus D. Association of bilateral renal agenesis and Di George syndrome in an infant of a diabetic mother. Helv Paediatr Acta 1982;37:471– 474.Google Scholar
  231. 231.
    Ferencz C, Rubin JD, McCarter RJ, Clark EB. Maternal diabetes and cardiovascular malformations: Predominance of double outlet right ventricle and truncus arteriosus. Teratology 1990;41:319– 326.Google Scholar
  232. 232.
    Wilson TA, Blethen SL, Vallone A, Alenick DS, Nolan P, Katz A, Amorillo TP, Goldmuntz E, Emanuel BS, Driscoll DA. DiGeorge anomaly with renal agenesis in infants of mothers with diabetes. Am J Med Genet 1993;47:1078–1082.Google Scholar
  233. 233.
    Novak RW, Robinson HB. Coincident DiGeorge anomaly and renal agenesis and its relation to maternal diabetes. Am J Med Genet 1994;50:311–312.Google Scholar
  234. 234.
    Digilio MC, Marino B, Formigari R, Giannotti A. Maternal diabetes causing DiGeorge anomaly and renal agenesis. Am J Med Genet 1995;55:513–514.Google Scholar
  235. 235.
    Kumar A, Sapire DW, Lockhart LH, McCombs J, Hawkins HK, Van Mierop LH. Atrioventricular septal defect with pulmonary atresia in DiGeorge anomaly: Expansion of the cardiac phenotype. Am J Med Genet 1996;61:89–91.Google Scholar
  236. 236.
    Lammer EJ, Opitz JM. The DiGeorge anomaly as a developmental field defect. Am J Med Genet Suppl 1986;2:113–127.Google Scholar
  237. 237.
    Hall BK. The induction of neural crest-derived cartilage and bone by embryonic epithelia: An analysis of the mode of action of an epithelial-mesenchymal interaction. J Embryol Exp Morphol 1981;64:305–320.Google Scholar
  238. 238.
    Kirby ML, Gale TF, Stewart DE. Neural crest cells contribute to aorticopulmonary septation. Science 1983;220:1059–1061.Google Scholar
  239. 239.
    Bockman DE, Kirby ML. Dependence of thymus development on derivatives of the neural crest. Science 1984;223:498–500.Google Scholar
  240. 240.
    Morris-Kay G, Ruberte E, Fukiishi Y. Mammalian neural crest and neural crest derivatives. Anat Anz 1993;175:501–507.Google Scholar
  241. 241.
    Momma K, Matsuoka R, Takao A. Aortic arch anomalies associated with chromosome 22q11 deletion (CATCH 22). Pediatr Cardiol 1999;20:97–102.Google Scholar
  242. 242.
    Kapron C, Trasler D. Genetic determinants of teratogen-induced abnormal development in mouse and rat embryos in vitro. Int J Dev Biol 1997;41:337–344.Google Scholar
  243. 243.
    Morrison K, Papapetrou C, Hol FA, Mariman EC, Lynch SA, Burn J, Edwards YH. Susceptibility to spina bifida; an association study of five candidate genes. Ann Hum Genet 1998;62:379–396.Google Scholar
  244. 244.
    Degnbol B, Green A. Diabetes mellitus among first and second degree relatives of early onset diabetes. Ann Hum Genet 1978;42:25–47.Google Scholar
  245. 245.
    Tillil H, Köbberling J. Age-corrected empirical genetic risk estimates for first degree relatives of IDDM patients. Diabetes 1982;36:93–99.Google Scholar
  246. 246.
    Warram J, Krolewski AS, Gottlieb M, Kahn CR. Differences in risk of insulin-dependent diabetes mellitus in offspring of diabetic mothers and diabetic fathers. N Engl J Med 1984;311:149–151.Google Scholar
  247. 247.
    Dahlquist G, Blom L, Tuvemo T, Nyström L, Sandström A, Wall S. The Swedish childhood diabetes studyùresults from nine year case register and a one year case-referrent study indicating that type 1 (insulin-dependent) diabetes mellitus is associated with both type 2 (non-insulin-dependent) diabetes mellitus and autoimmune disorders. Diabetologia 1989;32:2–6.Google Scholar
  248. 248.
    McCarthy BJ, Dorman JS, Aston CE. Investigating genomic imprinting and susceptibility to insulin-dependent diabetes mellitus: An epidemiological approach. Genet Epidemiol 1991;8:177– 186.Google Scholar
  249. 249.
    Pociot F, Nørgård K, Hobolth N, Andersen O, Nerup J, Childhood TDSGoDi. Anationwide population-based study of the familial aggregation of insulin-dependent diabetes in Denmark. Diabetologia 1993;36:870–875.Google Scholar
  250. 250.
    Tuomilehto J, Podar T, Tuomilehto-Wolf E, Virtala E. Evidence for importance of gender and birth cohort for risk of IDDM in offspring of IDDM parents. Diabetologia 1995;38:975–982.Google Scholar
  251. 251.
    Chung CS, Myrianthopoulos NC. Factors affecting risks of congenital malformations. II. Effect of maternal diabetes on congenital malformations. Birth Defects 1975;11:23–38.Google Scholar
  252. 252.
    Stoll C, Alembik Y, Dott B, Roth MP. Study of Down syndrome in 238,942 consecutive births. Ann Genet 1998;41:44–51.Google Scholar
  253. 253.
    Narchi H, Kulaylat N. High incidence of Down's syndrome in infants of diabetic mothers. Arch Dis Child 1997;77:242–244.Google Scholar
  254. 254.
    Pelz J, Kunze J. Down's syndrome in infants of diabetic mothers [letter; comment]. Arch Dis Child 1998;79:199–200.Google Scholar
  255. 255.
    Nelson M, Lessell S, Sadun AA. Optic nerve hypoplasia and maternal diabetes mellitus. Arch Neurol 1986;43:20–25.Google Scholar
  256. 256.
    Van Allen MI, Myhre S. New multiple congenital anomalies syndrome in a stillborn infant of consanguinous parents and a prediabetic pregnancy. Am J Med Genet 1991;38:523–528.Google Scholar
  257. 257.
    Endo A, Ingalls TH. Chromosomal anomalies in embryos of diabetic mice. Arch Environ Health 1968;16:316–325.Google Scholar
  258. 258.
    Yamamoto M, Endo A, Watanabe G, Ingalls TH. Chromosomal aneuploidies and polyploidies in embryos of diabetic mice. Arch Environ Health 1971;22:468–475.Google Scholar
  259. 259.
    Sadler TW, Hunter ES, Wynn RE, Phillips LS. Evidence for multifactorial origin of diabetes-induced embryopathies. Diabetes 1989;38:70–74.Google Scholar
  260. 260.
    Salganik RI, Solovyova NA, Dikalov SI, Grishaeva ON, Semenova LA, Popovsky AV. Inherited enhancement of hydroxyl radical generation and lipid peroxidation in the S strain rats results in DNA rearrangements, degenerative diseases, and premature aging. Biochem Biophys Res Commun 1994;199:726–733.Google Scholar
  261. 261.
    Cagliero E, Forsberg H, Sala R, Lorenzi M, Eriksson UJ. Maternal diabetes induces increased expression of extracellular matrix components in rat embryos. Diabetes 1993;42:975–980.Google Scholar
  262. 262.
    Forsberg H, Wentzel P, Eriksson UJ. Maternal diabetes alters extracellular matrix protein concentrations in rat placentae. Am J Obstet Gynecol 1998;179:772–778.Google Scholar
  263. 263.
    Forsberg H, Borg LAH, Cagliero E, Eriksson UJ. Altered levels of scavenging enzymes in embryos subjected to a diabetic environment. Free Radic Res 1996;24:451–459.Google Scholar
  264. 264.
    Hill AL, Phelan SA, Loeken MR. Reduced expression of Pax-3 is associated with over expression of cdc46 in the mouse embryo. Dev Genes Evol 1998;208:128–134.Google Scholar
  265. 265.
    Cai J, Phelan SA, Hill AL, Loeken MR. Identification of Dep-1, a new gene regulated by the transcription factor Pax-3, as a marker for altered embryonic gene expression during diabetic pregnancy. Diabetes 1998;47:1803–1805.Google Scholar
  266. 266.
    Conway S, Henderson D, Copp A. Pax3 is required for cardiac neural crest migration in the mouse: Evidence from the splotch (Sp2H) mutant. Development 1997;124:505–514.Google Scholar
  267. 267.
    Diamond MP, Harbert-Moley K, Logan J, Pellicer A, Lavy G, Vaughn WK, DeCherney AH. Manifestation of diabetes mellitus on mouse follicular and pre-embryo development: Effect of hyperglycemia per se. Metabolism 1990;39:220–224.Google Scholar
  268. 268.
    Beebe LF, Kaye PL. Maternal diabetes and retarded preimplantation development of mice. Diabetes 1991;40:457–461.Google Scholar
  269. 269.
    Lea R, McCracken J, McIntyre S, Smith W, Baird J. Disturbed development of the preimplantation embryo in the insulin-dependent diabetic BB/E rat. Diabetes 1996;45:1463–1470.Google Scholar
  270. 270.
    Zusman I, Ornoy A, Yaffe P, Shafrir E. Effects of glucose and serum from streptozotocin-diabetic and non-diabetic rats on the in vitro development of preimplantation mouse embryos. Isr J Med Sci 1985;21:359–365.Google Scholar
  271. 271.
    Zusman I, Yaffe P, Ornoy A. Effects of metabolic factors in the diabetic state on the in vitro development of preimplantation mouse embryos. Teratology 1987;35:77–85.Google Scholar
  272. 272.
    De Hertogh R, Vanderheyden I, Pampfer S, Robin D, Dufrasne E, Delcourt J. Stimulatory and inhibitory effects of glucose and insulin on rat blastocyst development in vitro. Diabetes 1991;40:641–647.Google Scholar
  273. 273.
    Diamond MP, Pettway ZY, Logan J, Moley K, Vaughn W, DeCherney AH. Dose-response effect of glucose, insulin, and glucagon on mouse pre-embryo development. Metabolism 1991;40:566–570.Google Scholar
  274. 274.
    Moley KH. Diabetes and preimplantation events of embryogenesis. Semin Reprod Endocrinol 1999;17:137–151.Google Scholar
  275. 275.
    Pampfer S, Vanderheyden I, McCracken JE, Vesela J, De Hertogh R. Increased cell death in rat blastocysts exposed to maternal diabetes in utero and to high glucose or tumor necrosis factor-alpha in vitro. Development 1997;124:4827–4836.Google Scholar
  276. 276.
    Pampfer S, Vanderheyden I, De Hertogh R. Increased synthesis of tumor necrosis factor-alpha in uterine explants from pregnant diabetic rats and in primary cultures of uterine cells in high glucose. Diabetes 1997;46:1214–1224.Google Scholar
  277. 277.
    Pampfer S, Vanderheyden I, Vesela J, De Hertogh R. Neutralization of tumor necrosis factor alpha (TNF alpha) action on cell proliferation in rat blastocysts by antisense oligodeoxyribonucleotides directed against TNF alpha p60 receptor. Biol Reprod 1995;52:1316–1326.Google Scholar
  278. 278.
    Wuu YD, Pampfer S, Vanderheyden I, Lee KH, De Hertogh R. Impact of tumor necrosis factor alpha on mouse embryonic stem cells. Biol Reprod 1998;58:1416–1424.Google Scholar
  279. 279.
    Phillips AO, Topley N, Steadman R, Morrisey K, Williams JD. Induction of TGF-beta 1 synthesis in D-glucose primed human proximal tubular cells by IL-1 beta and TNF alpha. Kidney Int 1996;50:1546–1554.Google Scholar
  280. 280.
    Jurisicova A, Latham KE, Casper RF, Varmuza SL. Expression and regulation of genes associated with cell death during murine preimplantation embryo development. Mol Reprod Dev 1998;51:243– 253.Google Scholar
  281. 281.
    Ratan RV, Murphy TH, Baraban JM. Oxidative stress induces apoptosis in embryonic cortical neurons. J Neurochem 1994;62:376– 379.Google Scholar
  282. 282.
    Lopes S, Jurisicova A, Sun JG, Casper RF. Reactive oxygen species: Potential cause for DNA fragmentation in human spermatozoa. Hum Reprod 1998;13:896–900.Google Scholar
  283. 283.
    Generoso WM, Shourbaji AG, Piegorsch WW, Bishop JB. Developmental response of zygotes exposed to similar mutagens. Mutat Res 1991;250:439–446.Google Scholar
  284. 284.
    Polifka JE, Rutledge JC, Kimmel GL, Dellarco V, Generoso WM. Exposure to ethylene oxide during the early zygotic period induces skeletal anomalies in mouse fetuses. Teratology 1996;53:1–9.Google Scholar
  285. 285.
    Thomas CR, Eriksson GL, Eriksson UJ. Effects of maternal diabetes on placental transfer of glucose in rats. Diabetes 1990;39:276–282.Google Scholar
  286. 286.
    Hahn T, Barth S, Weiss U, Mosgoeller W, Desoye G. Sustained hyperglycemia in vitro down-regulates the GLUT-1 glucose transport system of cultured human term placental trophoblast: A mechanism to protect fetal development? FASEB J 1998;12:1221–1231.Google Scholar
  287. 287.
    Takao Y, Akazawa S, Matsumoto K, Takino H, Akazawa M, Trocino RA, Maeda Y, Okuno S, Kawasaki E, Uotani S, Yokota, A, Nagataki S. Glucose transporter gene expression in rat conceptus during high glucose culture. Diabetologia 1993;36:696– 706.Google Scholar
  288. 288.
    Trocino RA, Akazawa S, Takino H, Takao Y, Matsumoto K, Maeda Y, Okuno S, Nagataki S. Cellular-tissue localization and regulation of the Glut-1 protein in both the embryo and the visceral yolk sac from normal and experimental diabetic rats during the early post implantation period. Endocrinology 1994;134:869– 879.Google Scholar
  289. 289.
    Viana M, Barbas C, Castro M, Herrera E, Bonet B. Alphatocopherol concentration in fetal and maternal tissues of pregnant rats supplemented with alpha-tocopherol. Ann Nutr Metab 1999;43:107–112.Google Scholar
  290. 290.
    Reece EA, Homko CJ, Wu YK, Wiznitzer A. The role of free radicals and membrane lipids in diabetes-induced congenital malformations. J Soc Gynecol Investig 1998;5:178–187.Google Scholar
  291. 291.
    Botto LD, Mulinare J, Erickson JD. Occurrence of congenital heart defects in relation to maternal mulitivitamin use. Am J Epidemiol 2000;151:878–884.Google Scholar
  292. 292.
    Chappell LC, Seed PT, Briley AL, Kelly FJ, Lee R, Hunt BJ, Parmar K, Bewley SJ, Shennan AH, Steer PJ, Poston L. Effect of antioxidants on the occurrence of pre-eclampsia in women at increased risk: A randomized trial. Lancet 1999;354:810–816.Google Scholar
  293. 293.
    Herrera E. Metabolic adaptations in pregnancy and their implications for the availability of substrates to the fetus. Eur J Clin Nutr 2000;54:S47–S51.Google Scholar
  294. 294.
    Dhanasekaran N, Wu YK, Reece EA. Signaling pathways and diabetic embryopathy. Semin Reprod Endocrinol 1999;17:167– 174.Google Scholar
  295. 295.
    Simán M. Congenital malformations in experimental diabetic pregnancy: Aetiology and antioxidative treatment. Minireview based on a doctoral thesis. Ups J Med Sci 1997;102:61–98.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Ulf J. Eriksson
    • 1
  • Jonas Cederberg
    • 1
  • Parri Wentzel
    • 1
  1. 1.Department of Medical Cell BiologyUppsala UniversityUppsalaSweden

Personalised recommendations