Biochemical Genetics

, Volume 35, Issue 9–10, pp 315–326 | Cite as

Bezoar (Capra aegagrus) Is a Matriarchal Candidate for Ancestor of Domestic Goat (Capra hircus): Evidence from the Mitochondrial DNA Diversity

  • Toyoyuki Takada
  • Yoshiaki Kikkawa
  • Hiromichi Yonekawa
  • Shigehisa Kawakami
  • Takashi Amano


The leading hypothesis on the ancestor of domestic goats (Capra hircus) is that it is the wild goat called the bezoar or pasang (Capra aegagrus). To verify this hypothesis, we sequenced and compared the cytochrome b gene of mitochondrial DNA from six domestic goats and a bezoar. A further sequence for the markhor was taken from the database. In total we detected 51 nucleotide substitutions among the domestic goats, bezoar and markhor. However, only one specific nucleotide substitution was found between the domestic goats and the bezoar. On the other hand, 43 nucleotide substitutions were specific for the markhor. This result suggested a close relationship between the domestic goats and the bezoar. A neighbor-joining and parsimony phylogenetic tree constructed using the sequences showed that the domestic goats and the bezoar belong to the same cluster, while the markhor showed a distinct cluster separate from that of the domestic/bezoar cluster. This result was confirmed by trees based on the sequence of the mitochondrial displacement loop regions. These results suggest that the strongest candidate for a matriarchal ancestor of domestic goats is the bezoar.

bezoar domestic goat mitochondrial cytochrome b gene mitochondrial displacement loop (D-loop) phylogenetic analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, S., de Bruijn, M. H. L., Coulson, A. R., Eperon, I. C., Sanger, F., and Young, I. G. (1982). Complete sequence of bovine mitochondrial DNA: Concerted features of the mammalian mitochondrial genome. J. Mol. Biol. 156:683.Google Scholar
  2. Arai, K., Munechika, I., Ito, I., Kikkawa, A., Nakamura, K., Kanazawa, T., and Kosugiyama, M. (1997). Phylogenetic relationship of Caprini estimated by cytochrome b gene sequence analysis. Anim. Sci. Technol. (Jpn.) 68(2):148.Google Scholar
  3. Bököyi, S. (1974). History of Domestic Mammals in Central and Eastern Europe, Akadémiai Kiadó, Budapest.Google Scholar
  4. Bradley, D. G., MacHugh, D. E., Cunningham, P., Loftus, R. T. (1996). Mitochondrial diversity and the origins of African and European cattle. Proc. Natl. Acad. Sci. USA 93:5131.Google Scholar
  5. Felsenstein, J. (1993). PHYLIP (Phylogeny Inference Package), Version 3.5, University of California Herbarium, Berkeley.Google Scholar
  6. Gotoh, O. (1996). Significant improvement in accuracy of multiple protein sequence alignments by iterative refinement as assessed by reference to structural alignments. J. Mol. Biol. 264(4):823.Google Scholar
  7. Harris, D. R. (1962). The distribution and ancestry of the domestic goat. Proc. Linn. Soc. London 173:79.Google Scholar
  8. Herre, W. (1958). Abstammung und Domestikation der Haustiere. In Hammond, J., Johansson, I., and Haring, F. (eds.), Handbuch der Tierzüchtung, 1, Paul Parey, Hamburg and Berlin, p. 1.Google Scholar
  9. Herre, W., and Röhrs, M. (1973). Haustiere-Zoologish Gesehen, G. Fischer, Stuttgart.Google Scholar
  10. Irwin, D. M., Kocher, T. D., and Wilson, A. C. (1991). Evolution of cytochrome b gene of mammals. J. Mol. Evol. 32:128.Google Scholar
  11. Katsumata, M., Nozawa, K., Amano, T., Shinjyo, A., and Abe, T., (1981). Blood protein gene constitution of the Japanese Saanen breed of goat. Jap. J. Zootech. Sci., 52:553.Google Scholar
  12. Katsumata, M., Amano, T., Tanaka, K., Nozawa, K., Bahk, K., Park, B., and Lee, C. (1982). Blood protein variations of the Korean native goats (in Japanese). Jap. J. Zootech. Sci., 53:521.Google Scholar
  13. Kikkawa, Y., Amano, T., and Suzuki, H. (1995). Analysis of genetic diversity of domestic cattle in East and Southeast Asia in terms of variations in restriction sites and sequences of mitochondrial DNA. Biochem. Genet. 28:137.Google Scholar
  14. Loftus, R. T., Machugh, D. E., Bradley, D. G., Sharp, P. M., and Cunningham, P. (1994). Evidence for two independent domestications of cattle. Proc. Natl. Acad. Sci. USA 91:2757.Google Scholar
  15. Maniatis, T., Fritsch, E. F., and Sambrook, J. (1982). Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  16. Okumura, N., Ishiguro, N., Nakao, M., Matsui, A., and Sahara, M. (1996). Intra-and interbreed genetic variations of mitochondrial DNA major non-coding regions in Japanese native dog breeds (Canis familiaris). Anim. Genet. 27:397.Google Scholar
  17. Saitou, and Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. J. Mol. Evol. 4:406.Google Scholar
  18. Smith, M. F., and Patton, J. L. (1991). Variation in mitochondrial cytochrome b sequence in natural populations of South American Akodontine Rodents (Muridae: Sigmodontinae). Mol. Biol. Evol. 8(1):85.Google Scholar
  19. Swofford, D. L. (1991). Phylogenetic Analysis Using Parsimony (PAUP), Version 3.0s, Illinois Natural Histories survey, Champaign.Google Scholar
  20. Wall, D. A., Davis, S. K., and Read, B. M. (1992). Phylogenetic relationships in the subfamily Bovinae (mammalia: artiodactyla) based on ribosomal DNA. J. Mamm. 73(2):262.Google Scholar
  21. Wenink, P. W., Baker, A. J., and Tilanus, G. J. (1993). Hypervariable-control-region sequences reveal global population structuring in a long-distance migrant shorebird, the Dunlin (Calidris alpina). Proc. Natl. Acad. Sci. USA 90:94.Google Scholar
  22. Yonekawa, H., Takahama, S., Gotoh, O., Miyashita, N., and Moriwaki, K. (1994). Genetic diversity and geographic distribution of Mus musculus subspecies based on the polymorphism of mitochondrial DNA. Genetics in Wild Mice, Japan Scientific Societies Press and Kargen, p. 25.Google Scholar
  23. Zeuner, F. E. (1963). A History of Domesticated Animals, Hutchinson, London.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Toyoyuki Takada
    • 1
    • 2
  • Yoshiaki Kikkawa
    • 2
  • Hiromichi Yonekawa
    • 2
  • Shigehisa Kawakami
    • 3
  • Takashi Amano
    • 1
  1. 1.Department of Zootechnical ScienceTokyo University of AgricultureTokyoJapan
  2. 2.Department of Laboratory Animal ScienceThe Tokyo Metropolitan Institute of Medical ScienceTokyoJapan
  3. 3.Gunma Safari World Co., Ltd.GunmaJapan

Personalised recommendations