Advertisement

Journal of Materials Science

, Volume 38, Issue 4, pp 803–815 | Cite as

Near-surface deformation under scratches in polypropylene blends Part I Microscopic characterization of deformation

  • Houxiang Tang
  • D. C. Martin
Article

Abstract

A microstructural characterization approach has been developed to study the mechanisms of near-surface deformation under surface scratches in injection-molded polypropylene blends with over 20% rubber modifier (thermoplastic polyolefin or TPO). The near-surface microstructure of the material before and after scratching was characterized with different techniques such as transmission electron microscopy (TEM), scanning electron microscopy (SEM), optical microscopy and X-ray diffraction. It was observed that the TPO material plastically deformed by forming shear band structure under surface scratches. Materials inside shear band dilated and the extent of dilation could be measured from the characteristic angles between the shearband boundary and rubber particles. At a higher applied normal load (>200 g for the test in this study), evidence for surface fracture was observed. At even higher loads (>400 g), significant amounts of sub-surface voiding were observed, due to the delamination between the rubber phases and the polypropylene matrix. The observation of both the dilation of materials inside shearbands and the subsurface voiding at high normal loads advanced the understanding of scratching whitening mechanism in this kind of important materials. It was observed that the talc additives had no obvious influence on shear band nucleation and propagation. Results obtained in this study suggest that a strong interfacial adhesion between rubber phase and PP matrix is crucial to improving the scratching resistance of rubber modified polypropylene blends.

Keywords

Shear Band Rubber Particle Form Shear Band Rubber Phase Applied Normal Load 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Schallamach, Wear 17 (1971) 301.Google Scholar
  2. 2.
    G. A. D. Briggs and B. J. Briscoe, ibid. 35 (1975) 357.Google Scholar
  3. 3.
    A. D. Roberts and A.G. Thomas, ibid. 33 (1975) 45.Google Scholar
  4. 4.
    Y. Uchiyama and Y. Ishino, ibid. 158 (1992) 141.Google Scholar
  5. 5.
    Y. Fukahori and H. Yamazaki, ibid. 171 (1994) 195.Google Scholar
  6. 6.
    Idem., ibid. 178 (1994) 109.Google Scholar
  7. 7.
    Idem., ibid. 188 (1995) 19.Google Scholar
  8. 8.
    V. Coveney and C. Menger, ibid. 233–235 (1999) 702.Google Scholar
  9. 9.
    K. Friedrich (ed.), “Friction and Wear of Polymer Composites” (Elsevier, New York, 1986).Google Scholar
  10. 10.
    K. Friedrich, Z. Lu and A. M. Hager, Wear 190 (1995) 139.Google Scholar
  11. 11.
    H. Czichos, D. Klaffke, E. Santner and M. Woydt, ibid. 190 (1995) 155.Google Scholar
  12. 12.
    S. W. Zhang, Tribology International 31 (1998) 49.Google Scholar
  13. 13.
    B. J. Briscoe, P.D. Evans, E. Pelillo and S. K. Sinha, Wear 200 (1996) 137.Google Scholar
  14. 14.
    B. J. Briscoe, E. Pelillo and S. K. Sinha, Polymer Engineering and Science 36 (1996) 2996.Google Scholar
  15. 15.
    B. J. Briscoe, Tribology International 31 (1998) 121.Google Scholar
  16. 16.
    K. J. Li, B. Y. Ni, J. C. M. Li, Journal of Materials Research 11 (1996) 1574.Google Scholar
  17. 17.
    R. R. Meehan, J. Kumar, M. Earl, E. Svenson and S. J. Burns, J. Mater. Sci. Lett. 18 (1999) 93.Google Scholar
  18. 18.
    C. Cauthier and R. Schirrer, J. Mater. Sci. 35 (2000) 2121.Google Scholar
  19. 19.
    R. Kaneko and E. Hamada, Wear 162–164 (1993) 370.Google Scholar
  20. 20.
    S. M. Setz, R. S. Duran, D. R. Fagerburg and L. T. Germinario, in Mat. Res. Soc. Symp. Proc.,Vol. 522 (Materials Research Society, 1998) p. 211.Google Scholar
  21. 21.
    B. D. Beake, G. J. Leggett and P. H. Shipway, Polymer 42 (2001) 7025.Google Scholar
  22. 22.
    G. S. Blackman, L. Lin and R. R. Matheson, ACS Polymer Preprints 39(2) (1998) 1218.Google Scholar
  23. 23.
    L. Lin, G. S. Blackman and R. R. Matheson, Progress in Organic Coatings 40 (2000) 85.Google Scholar
  24. 24.
    R. S. Kody and D. C. Martin, Polymer Engineering and Science 36 (1996) 298.Google Scholar
  25. 25.
    J. Chu, L. Rumao and B. Coleman, ibid. 38 (1998) 1906.Google Scholar
  26. 26.
    C. Xiang, H. J. Sue, J. Chu and K. Masuda, ibid. 41 (2001) 23.Google Scholar
  27. 27.
    J. Chu, C. Xiang, H. J. Sue, and H. R. Damon, ibid. 40 (2000) 944.Google Scholar
  28. 28.
    L. Lin, G. S. Blackman and R. R. Matheson, ACS Polymer Preprints 39(2) (1998) 1224.Google Scholar
  29. 29.
    C. Xiang, H. J. Sue, J. Chu and B. Coleman, J. Polym. Sci: Part B: Polym. Phys. 39 (2001) 47.Google Scholar
  30. 30.
    P. Z. Wang, I. M. Hutchings, S. J. Duncan, L. Jenkins and E. Woo, in Proceedings of SPE Automotive TPO Global Conference, 2000, p. 107.Google Scholar
  31. 31.
    P. Rangarajan, K. Harding and V. Watkins, APS Bulletin 46 (2001) 157.Google Scholar
  32. 32.
    E. Lau, S. Srinivasan and E. Szczepaniak, in Proceedings of SPE Automotive TPO Global Conference, 2000, p. 209.Google Scholar
  33. 33.
    J. Chappelle, M. Masalovic, K. Ryan and K. Musser, in Proceedings of SPE Automotive TPO Global Conference, 2000, p. 287.Google Scholar
  34. 34.
    K. L. Walton, M. K. Laughner, J. D. Pomije and E. S. Gisler, in Proceedings of SPE Automotive TPO Global Conference, 2000, p. 195.Google Scholar
  35. 35.
    D. Montezinos, B. G. Wells and J. L. Burns, J. Polym. Sci.: Polym. Lett. Ed. 23 (1985) 421.Google Scholar
  36. 36.
    J. Karger-Kocsis (ed.), “Polypropylene: Structure, Blends and Composites,Vol. 2: Copolymers and Blends” (Chapman & Hall, London, 1995).Google Scholar
  37. 37.
    J. Karger-Kocsis and I. Csikai, Polym. Eng. Sci. 27 (1987) 241.Google Scholar
  38. 38.
    J. H. Southern and R. L. Ballman, J. Appl. Polym. Sci. 24 (1979), 693.Google Scholar
  39. 39.
    F. M. Mirabella, N. Dioh and C. G. Zimba, in Proceedings of SPE Automotive TPO Global Conference, 1999, p. 183.Google Scholar
  40. 40.
    P. R. Hornsby and K. Premphet, J. Mater. Sci. 32 (1997) 4767.Google Scholar
  41. 41.
    A. van der Wal and R. J. Gaymans, Polymer 40 (1999) 6067.Google Scholar
  42. 42.
    W. Jiang, S. C. Tjong and R. K. Y. Li, ibid. 41 (2000) 3479.Google Scholar
  43. 43.
    R. Gensler, C. J. G. Plummer, C. Grein and H.-H. Kausch, ibid 41 (2000) 3809.Google Scholar
  44. 44.
    A. F. Yee and R. A. Pearson, J. Mater. Sci. 21 (1986) 2462.Google Scholar
  45. 45.
    I. M. Ward, “Mechanical Properties of Solid Polymers,” 2nd ed. (Wiley, New York, 1983) p. 361.Google Scholar
  46. 46.
    A. Lazzeri and C. B. Bucknall, Polymer 36 (1995) 2895.Google Scholar
  47. 47.
    H.-H. Kausch, R. Gensler, CH. Grein, C. J. G. Plummer and P. Scaramuzzino, J. Macromol. Sci.-Phys. B 38 (1999) 803.Google Scholar
  48. 48.
    H.-X. Tang and D. C. Martin, J. Mater. Sci., in press.Google Scholar
  49. 49.
    R. Rengarajan, S. K. Kesavan, K. L. Fullerton and S. Lee, J. Appl. Poly. Sci. 45 (1992) 317.Google Scholar
  50. 50.
    J. Holoubek and M. Raab, Collect. Czech. Chem. Commun. 60 (1995) 1875.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of MichiganAnn ArborUSA

Personalised recommendations