Advertisement

Theoretical and Mathematical Physics

, Volume 134, Issue 1, pp 39–46 | Cite as

Semiclassical \(\bar \partial \)-Method: Generating Equations for Dispersionless Integrable Hierarchies

  • L. V. Bogdanov
  • B. G. Konopelchenko
  • L. Martínez Alonso
Article

Abstract

We use the semiclassical \(\bar \partial \)-dressing method to derive compact generating equations for dispersionless hierarchies. The considered illustrative examples are the dispersionless Kadomtsev–Petviashvili and two-dimensional Toda lattice hierarchies.

semiclassical limit \(\bar \partial \) method τ-function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    B. A. Kuperschmidt and Yu. I. Manin, Funct. Anal. Appl., 11, 188-197 (1977); 12, 20-29 (1978); V. E. Zakharov, Funct. Anal. Appl., 14, 89-98 (1980); Phys. D, 3, 193-202 (1981); P. D. Lax and C. D. Levermore, Comm. Pure Appl. Math., 36, 253-290, 571-593, 809-830 (1983); I. M. Krichever, Funct. Anal. Appl., 22, 200-213 (1988).Google Scholar
  2. 2.
    Y. Kodama, Phys. Lett. A, 129, 223-226 (1988); 147, 477-482 (1990).Google Scholar
  3. 3.
    B. A. Dubrovin and S. P. Novikov, Russ. Math. Survey, 44, 35-124 (1989).Google Scholar
  4. 4.
    K. Takasaki and T. Takebe, Internat. J. Mod. Phys. A, Suppl., 1B, 889-922 (1992).Google Scholar
  5. 5.
    I. M. Krichever, Comm. Pure Appl. Math., 47, 437-475 (1994); N. M. Ercolani et al., eds., Singular Limits of Dispersive Waves (Nato Adv. Sci. Inst. Ser. B. Phys., Vol. 320), Plenum, New York (1994).Google Scholar
  6. 6.
    V. E. Zakharov, “Dispersionless limit of integrable systems in (2+1)-dimensions,” in: Singular Limits of Dispersive Waves (Nato Adv. Sci. Inst. Ser. B. Phys., Vol. 320, N. M. Ercolani et al., eds.), Plenum, New York (1994), pp. 165-174.Google Scholar
  7. 7.
    K. Takasaki and T. Takebe, Rev. Math. Phys., 7, 743-808 (1995).Google Scholar
  8. 8.
    R. Carroll and Y. Kodama, J. Phys. A, 28, 6373-6387 (1995).Google Scholar
  9. 9.
    S. Jin, C. D. Levermore, and D. W. McLaughlin, Comm. Pure Appl. Math., 52, 613-654 (1999).Google Scholar
  10. 10.
    I. M. Krichever, Comm. Math. Phys., 143, 415-429 (1992); B. A. Dubrovin, Comm. Math. Phys., 145, 195-207 (1992); Nucl. Phys. B, 379, 627-289 (1992); B. A. Dubrovin and Y. Zhang, Comm. Math. Phys., 198, 311-361 (1998); S. Aoyama and Y. Kodama, Comm. Math. Phys., 182, 185-219 (1996); Y. Kodama, SIAM J. Appl. Math., 59, 2162-2192 (1999); Y. Gibbons and S. P. Tsarev, Phys. Lett. A, 258, 263-271 (1999); M. Mineev-Weinstein, P. B. Wiegmann, and A. Zabrodin, Phys. Rev. Lett., 84, 5106-5109 (2000).Google Scholar
  11. 11.
    P. B. Wiegmann and A. Zabrodin, Comm. Math. Phys., 213, 523-538 (2000).Google Scholar
  12. 12.
    M. Dunajski, L. J. Mason, and P. Tod, J. Geom. Phys., 37, 63-93 (2001).Google Scholar
  13. 13.
    B. G. Konopelchenko, L. Martinez Alonso, and O. Ragnisco, J. Phys. A, 34, 10209-10217 (2001); nlin.SI/ 0103023 (2001).Google Scholar
  14. 14.
    B. Konopelchenko and L. Martinez Alonso, Phys. Lett. A, 286, 161-166 (2001).Google Scholar
  15. 15.
    B. Konopelchenko and L. Martinez Alonso, “Dispersionless scalar integrable hierarchies, Whitman hierarchy, and the quasi-classical dbar-dressing method,” J. Math. Phys. (to appear); nlin.SI/0105071 (2001).Google Scholar
  16. 16.
    I. N. Vekua, Generalized Analytic Functions [in Russian] (2nd ed.), Nauka, Moscow (1988); English transl., Pergamon, Oxford (1962).Google Scholar
  17. 17.
    I. K. Kostov, I. Krichever, M. Mineev-Weinstein, P. B. Wiegmann, and A. Zabrodin, “Tau function for analytic curves,” in: Random Matrix Models and Their Applications (Math. Sci. Res. Inst. Publ., Vol. 40, P. M. Bleher and A. R. Its, eds.), Cambridge Univ. Press, Cambridge (2001), pp. 285-299.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • L. V. Bogdanov
    • 1
  • B. G. Konopelchenko
    • 2
    • 3
  • L. Martínez Alonso
    • 4
  1. 1.Landau Institute for Theoretical Physics, RASMoscowRussia
  2. 2.Dipartimento di FisicaUniversit\`a degli Studi di LecceLecceItaly
  3. 3.Sezione di LecceIstituto Nazionale di Fisica NucleareLecceItaly
  4. 4.Departamento de Física Teórica IIUniversidad ComplutenseMadridSpain

Personalised recommendations