Nutrient Cycling in Agroecosystems

, Volume 65, Issue 1, pp 13–22

Ammonia, nitrous oxide and methane emissions from differently stored dairy manure derived from grass- and hay-based rations

  • D.R. Külling
  • H. Menzi
  • F. Sutter
  • P. Lischer
  • M. Kreuzer


Theeffects on nitrogen losses and volatilisation of ammonia, methane and nitrousoxide from manure storage were investigated using excreta of dairy cows fed twoforage-based rations, (i) young grass (ad libitum) and hay (2 kgd−1) or (ii) hay (ad libitum) and concentrate (3kg d−1). In two series either grass of low crudeprotein content (112 g kg−1 dry matter, similar tothe hay) or of high crude protein content (229 gkg−1) was used. Emissions from the resulting manureswere investigated in two common storage systems, the liquid manure system andthe slurry/farmyard manure system. Storage was performed under controlledconditions using the chamber technique to quantify trace gas emissions and themass balance method to measure total nitrogen loss. The ration characterised bythe low-protein grass resulted in higher urinary nitrogen and lower faecalnitrogen excretion than the hay ration, thus significantly enhancing totalnitrogen and ammonia emissions from all types of manure. Differences to the hayration were, however, far more pronounced feeding the high-protein grass, withthe emissions of nitrogen and ammonia accounting for the 3- to 4-fold level ofthat of the hay ration. Initial differences of the manures in nitrogen contenthad partly disappeared after storage yielding manures which differed less innitrogen fertiliser value than the fresh manures. In some but not all manuretypes there was a certain decrease in nitrous oxide emission feeding grassinstead of hay. Methane release was low with the high-protein grass of series2.Total nitrogen losses during 5 to 7 weeks of storage were lowest with farmyardmanure (11% of initial nitrogen), followed by liquid manure (19%)and slurry (30%). Calculated for the daily manure amount per cow,greenhouse gas emissions from 5 to 7 weeks stored manure were higher in theslurry/farmyard manure system than in the liquid manure system (2.4 vs 1.5kg CO2 equivalents).

Ammonia Dairy manure Forage Methane Nitrous oxide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amberger A., Vilsmeier K. and Gutser R. 1982. Stickstofffraktionen verschiedener Gullen und deren Wirkung im Pflanzenversuch. Z. Pflanzenernähr. Bodenk. 145: 283-294.Google Scholar
  2. Amon B., Boxberger J. and Amon T. 1998. Untersuchung der Ammoniakemission in der Landwirtschaft Österreichs zur Ermittlung der Reduktionspotentiale und Reduktionsmöglichkeiten. Endbericht zum Forschungsprojekt Nr L 883/94. Institut für Land-, Umwelt-und Energietechnik der Universität für Bodenkultur, Vienna, Austria.Google Scholar
  3. Berry N.R., Sutter F., Bruckmaier R.M., Blum J.W. and Kreuzer M. 2001. Limitations of high Alpine grazing conditions for early-lactation cows: effects of energy and protein supplementation. Anim. Sci. 73: 149-162.Google Scholar
  4. Bussink D.W. 1994. Relationships between ammonia volatilization and nitrogen fertilizer application rate, intake and excretion of herbage nitrogen by cattle on grazed swards. Fert. Res. 38: 111-121.Google Scholar
  5. Bussink D.W. and Oenema O. 1998. Ammonia volatilization from dairy farming systems in temperate areas: a review. Nutr. Cycl. Agroecosyst. 51: 19-33.Google Scholar
  6. Freibauer A. and Kaltschmitt M. 2000. N2O and CH4 inventories in European agriculture-methodological approach, quantification and comparison. In: Institute of Energy Economics and the Rational Use of Energy, Proc. Int. Conf. on Biogenic Emissions of Greenhouse Gases Caused by Arable and Animal Agriculture. University of Stuttgart 200 p.Google Scholar
  7. Hansen K.H., Angelidaki I. and Ahring B.K. 1998. Anaerobic digestion of swine manure: inhibition by ammonia. Water Res. 32: 5-12.Google Scholar
  8. IPCC (Intergovernmental Panel on Climate Change) 1996. Cli mate Change 1995. In: Houghton J.T., Jenkins G.J. and Ephraums J.J. (eds), The Science of Climate Change. Cambridge University Press, UK.Google Scholar
  9. James T., Meyer D., Esparza E., Depeters E.J. and Perez-Monti H. 1999. Effects of dietary nitrogen manipulation on ammonia volatilization from manure from Holstein heifers. J. Dairy Sci. 82: 2430-2439.Google Scholar
  10. Jarvis S.C., Hatch D.J. and Roberts D.H. 1989. The effects of grassland management on nitrogen losses from grazed swards through ammonia volatilization; the relationship to excretal N returns from cattle. J. Agric. Sci. (Camb). 112: 205-216.Google Scholar
  11. Jarvis S.C., Hatch D.J., Orr R.J. and Reynolds S.E. 1991. Micrometeorological studies of ammonia emission from sheep grazed swards. J. Agric. Sci. (Camb). 117: 101-109.Google Scholar
  12. Kellems R.O., Miner J.R. and Church D.C. 1979. Effect of ration, waste composition and length of storage on the volatilization of ammonia, hydrogen sulfide and odors from cattle waste. J. Anim. Sci. 48: 436-445.Google Scholar
  13. Kirchgessner M., Windisch W., Muller H.L. and Kreuzer M. 1991. Release of methane and of carbon dioxide by dairy cattle. Agribiol. Res. 44: 91-102.Google Scholar
  14. Kröber T.F., Kulling D.R., Menzi H., Sutter F. and Kreuzer M. 2000. Quantitative effects of feed protein reduction and methionine on nitrogen use by cows and nitrogen emissions from slurry. J. Dairy Sci. 83: 2941-2951.Google Scholar
  15. Külling D.R., Menzi H., Krober T.F., Neftel T.F., Sutter F., Lischer P. et al. 2001. Emissions of ammonia, nitrous oxide and methane from different types of dairy manure during storage as affected by dietary protein content. J. Agric. Sci. (Camb). 137: 235-250.Google Scholar
  16. Meier H. and Poppe S. 1979. Zum Einfluss nativer Rohfaser auf die wahre Verdaulichkeit des Stickstoffs und der Aminosauren. Arch. Tierernahr. 29: 111-118.Google Scholar
  17. Meixner F.X., Fickinger T., Marafu L., Serca D., Nathaus F.J., Makina E. et al. 1997. Preliminary results on nitric oxide emission from a southern African savanna ecosystem. Nutr. Cycl. Agroecosyst. 48: 123-138.Google Scholar
  18. Mosier A.R. 1989. Chamber and isotope techniques. In: Andreae M.O. and Schimel D.S. (eds), Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere. John Wiley & Sons, New York, pp. 175-187.Google Scholar
  19. Naumann K. and Bassler R. 1997. Methodenbuch Vol. III. Die chemische Untersuchung von Futtermitteln. VdLUFA-Verlag, Darmstadt, Germany.Google Scholar
  20. Oenema O., Gebauer G., Rodriguez M., Sapek A., Jarvis S.C., Corre W.J. et al. 1998. Controlling nitrous oxide emissions from grassland livestock production systems. Nutr. Cycl. Agroecosyst. 52: 141-149.Google Scholar
  21. Paul J.W., Dinn N.E., Kannangara T. and Fisher L.J. 1998. Protein content in dairy cattle diets affects ammonia losses and fertiliser nitrogen value. J. Environ. Qual. 27: 528-534.Google Scholar
  22. Pollet I., Christiaens J. and Van Langenhove H. 1998. Determination of the ammonia emission from cubicle houses for dairy cows based on a mass balance. J. Agric. Eng. Res. 71: 239–248.Google Scholar
  23. RAP (Station fédérale de recherches en production animale) 1999. Fütterungsempfehlungen und Nährwerttabellen für Wiederkäuer. 4th edn. Landwirtschaftliche Lehrmittelzentrale, Zollikofen, Switzerland.Google Scholar
  24. Rihm B. 1996. Critical loads of nitrogen and their exceedances. Environmental Series No 275. Federal Office of Environment Forests and Landscape, Berne, Switzerland.Google Scholar
  25. Roffler R.E. and Satter L.D. 1975. Relationship between ruminal ammonia and nonprotein nitrogen utilization by ruminants. II. Application of published evidence to the development of a theoretical model for predicting nonprotein nitrogen utilization. J. Dairy Sci. 58: 1889-1898.Google Scholar
  26. Smits M.C.J., Valk H., Elzing A. and Keen A. 1995. Effect of protein nutrition on ammonia emissions from a cubicle house for dairy cattle. Livest. Prod. Sci. 44: 147-156.Google Scholar
  27. Stadelmann F., Menzi H., Pfefferli S. and Zimmermann A. 1998. Ammonia Emissions in Switzerland. Present Situation, Development, Technical and Economic Assessment of Abatement Measures, Recommendations. Swiss Federal Research Station for Agroecology and Agriculture, Zurich/Berne, Switzerland, 56 pp.Google Scholar
  28. Valk H. 1994. Effects of partial replacement of herbage by maize silage on N-utilization and milk production of dairy cows. Livest. Prod. Sci. 40: 241-250.Google Scholar
  29. Walther U., Menzi H., Ryser J.-P., Flisch R., Jeangros B., Kessler W. et al. 1994. Grundlagen für die Dungung im Acker-und Futterbau. Agrarforsch. 1 (Suppl.): 1-40.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • D.R. Külling
    • 1
  • H. Menzi
    • 1
  • F. Sutter
    • 3
  • P. Lischer
    • 5
  • M. Kreuzer
    • 3
  1. 1.Federal Research Station of Agroecology and AgricultureReckenholzSwitzerland
  2. 2.Swiss College of AgricultureZollikofenSwitzerland
  3. 3.Institute of Animal Sciences, Animal Nutrition, ETH Zentrum/LFWSwiss Federal Institute of Technology ZurichSwitzerland
  4. 4.Swiss Centre for Agricultural ExtensionLindauSwitzerland
  5. 5.ConstatSwiss Centre for Agricultural ExtensionSpiegelSwitzerland

Personalised recommendations