Plant Growth Regulation

, Volume 39, Issue 1, pp 67–76 | Cite as

Thin cell layer technology for induced response and control of rhizogenesis in chrysanthemum

  • Jaime A. Teixeira da Silva


Chrysanthemum (Dendranthema Xgrandiflora Ramat. Kitamura) stem transverse thin celllayers (tTCLs) were used to obtain defined morphogenic programs with selectedplant growth regulators. A rhizogenic pathway could be manipulated invitro by the application of a single auxin (2,4-D, NAA, IBA or IAA,in increasing order of rhizogenic response), or by the addition of coconutwater, with light or darkness playing a significant role. The addition of TIBAeliminated the rhizogenic capacity of all the auxins tested, but not that ofcoconut water, while the addition of activated charcoal was inhibitory. Theabsence of sucrose resulted in a limited rhizogenic response. Results clearlyindicate the importance of auxins, media additives and light in the activationof a rhizogenic program in chrysanthemum tTCLs. Due to their restricted size andmedium-dependant nature, the capacity to control rhizogenesis and/ororganogenesis in chrysanthemum (and indeed any plant species) by TCLs hasfar-reaching consequences and applications in the floricultural andpharmaceutical sectors. Since all factors (exogenously-applied hormones andother growth-stimulating or growth-inhibiting substances, light, temperature,humidity and other environmental cues) may be strictly controlled invitro, TCL technology allows for the establishment of protocols aimedat chrysanthemum flower improvement through genetic engineering, the success ofwhich lies in its first step i.e. programmable morphogenesis and regeneration.

Auxin Chrysanthemum Coconut water Rhizogenesis Thin cell layer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Azmi A., Noin M., Landre P., Proteau M., Boudet A.M. and Chriqui D. 1997. High frequency plant regeneration from Eucalyptus globulus Labill. hypocotyls: Ontogenesis and ploidy level of the regenerants. Plant Cell Tiss. Org. Cult. 51: 9–16.Google Scholar
  2. Boase M.R., Bradley J.M. and Borst N.K. 1998a. Genetic transformation mediated by Agrobacterium tumefaciens of florists' chrysanthemum (Dendranthema X grandiflorum) cultivar ‘Peach Margaret’. In Vitro Cell Dev. Biol-Plant 34: 46–51.Google Scholar
  3. Boase M.R., Butler R.C. and Borst N.K. 1998b. Chrysanthemumcultivar-Agrobacterium interactions revealed by GUS expression time course experiments. Sci. Hort. 77: 89–107.Google Scholar
  4. Budhiono A., Rosidi B., Taher H. and Iguchi M. 1999. Kinetic aspects of bacterial cellulose formation in nata-de-coco culture system. Carbo. Polym. 40: 137–143.Google Scholar
  5. Fukai S., Chen Z. and Oë M. 1987. Cultivar differences in adventitious shoot formation from leaf segments of chrysanthemum (Dendranthema grandiflora (Ramat.) Kitamura). Bull Osaka Agri. Res. Cen. 24: 55–58.Google Scholar
  6. Gabryszewska E. 1996. The influence of temperature, daylength and sucrose concentration on the growth and development of Alstroemeria ‘Zebra’ in vitro. Acta Agrobot. 49: 131–140.Google Scholar
  7. Hashim Z.N., Campbell W.F. and Carman J.G. 1991. Normalization of the DNA content of telophase cells from wheat calli by nutrient modifications. Theor Appl. Genet. 82: 413–416.Google Scholar
  8. Kallak H., Reidla M., Hilpus I. and Virumae K. 1997. Effects of genotype, explant source and growth regulators on organogenesis in carnation callus. Plant Cell Tiss. Org. Cult. 51: 127–135.Google Scholar
  9. Karabaghli D.C., Sotta B., Bonnet M., Gay G. and Le Tacon F. 1998. The auxin transport inhibitor 2,3,5-triidobenzoic acid (TIBA) inhibits the stimulation of in vitro lateral root formation and the colonization of the tap-root cortex of Norway spruce (Picea albies) seedlings by the ectomycorrhizal fungus Laccaria bicolor. New Phytol. 140: 723–733.Google Scholar
  10. Kononowicz H. and Janick J. 1998. Somatic embryogenesis via callus of Theobroma cacao L. I cell cycle, DNA content, RNA synthesis, and DNA template activity. Acta Physiol. Plant 10: 93–106.Google Scholar
  11. Lu C.Y., Nugent G. and Wardley T. 1990. Efficient direct plant regeneration from stem segments of chrysanthemum (Dendranthema morifolium Ramat. cv. Royal Purple). Plant Cell Rep. 8: 733–736.Google Scholar
  12. Marin M.L. and Marin J.A. 1998. Excised rootstock roots cultured in vitro. Plant Cell Rep. 18: 350–355.Google Scholar
  13. Mathur G. and Nadgauda R. 1999. In vitro plantlet regeneration from mature zygotic embryos of Pinus wallichiana A.B. Jacks. Plant Cell Rep. 19: 74–80.Google Scholar
  14. Malamug J.J.F., Yazawa S. and Asahira T. 1992. Callus formation and multiplication in taro. J. Jap. Soc. Hort. Sci. 60: 927–933.Google Scholar
  15. Mishiba K. and Mii K. 2000. Polysomaty analysis in diploid and tetraploid Portulaca grandiflora. Plant Sci. 156: 213–219.Google Scholar
  16. Moncousin C. 1991. Rooting of in vitro cuttings. In: Bajaj Y.P.S. (ed.), Biotechnology in Agriculture and Forestry. Vol. 17. Springer-Verlag, Berlin, Heidelberg, pp. 231–260.Google Scholar
  17. Mosihuzzaman M., Paul G.K. and Nahar N. 1993. Analysis of carbohydrates in green coconut water. Dhaka Univ. Studies Part B. Sci. 41: 113–118.Google Scholar
  18. Murashige T. and Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant 15: 473–479.Google Scholar
  19. Németh G. 1986. Induction of rooting. In: Trees I. and Bajaj Y.P.S. (eds), Biotechnology in agriculture and forestry. Vol. 1. Springer, Berlin, pp. 49–64.Google Scholar
  20. Nunes J.F. 1998. Utilization of the coconut water as extender of the semen of domestic animals and man. Rev. Bras Repr. Anim. 22: 109–112.Google Scholar
  21. Palanisamy K., Ansari S.A., Kumar P. and Gupta B.N. 1998. Adventitious rooting in shoot cuttings of Azadirachta indica and Pongamia pinnata. New Forests 16: 81–88.Google Scholar
  22. Sabatini S., Beis D., Wolkenfeldt H., Murfett J., Guilfoyle T., Malamy J. et al. 1999. An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99: 463–472.Google Scholar
  23. Shahzad A., Hasan H. and Siddiqui S.A. 1999. Callus induction and regeneration in Solanum nigrum L. in vitro. Phytomorphology 49: 215–220.Google Scholar
  24. Sherman J.M., Moyer J.W. and Daub M.E. 1998. A regeneration and Agrobacterium-mediated transformation system for genetically diverse chrysanthemum cultivars. J. Amer. Soc. Hort. Sci. 123: 189–194.Google Scholar
  25. Siddiqui Z.M., Farooq S.A. and Rao Y.B.N. 1999. High efficiency clonal propagation of Carica papaya L. under in vitro conditions through epicotyl explants. Adv. Plant Sci. 12: 341–344.Google Scholar
  26. Suri S.S., Jain S. and Ramawat K.G. 1999. Plantlet regeneration and bulbil formation in vitro from leaf and stem explants of Curculigo orchioides, an endangered medicinal plant. Sci. Hort. 79: 127–134.Google Scholar
  27. Takatsu Y., Nishizawa Y., Hibi T. and Akutsu K. 1999. Transgenic chrysanthemum (Dendranthema grandiflora (Ramat.) Kitamura) expressing a rice chitinase gene shows enhanced resistance to gray mold (Botrytis cinerea). Sci. Hort. 82: 113–123.Google Scholar
  28. Teixeira da Silva J.A 2002. Polyamines in the regulation of chrysanthemum and tobacco in vitro morphogenic pathways. Prop. Orn. Plants 2: 9–15.Google Scholar
  29. Teixeira da Silva J.A. and Fukai S. 2002. Change in transgene expression following transformation of chrysanthemum by four gene introduction methods. Prop. Orn. Plants 2: 28–37.Google Scholar
  30. Thakur R.C., Hosoi Y. and Ishii K. 1998. Rapid in vitro propagation of Matteuccia struthiopteris (L.) Todaro – an edible fern. Plant Cell Rep. 18: 203–208.Google Scholar
  31. Tosca A., Delledonne M., Furini A., Belenghi B., Fogher C. and Frangi P. 2000. Transformation of Korean chrysanthemum (Dendranthema zawadskii x D. grandiflorum) and insertion of the maize autonomous element Ac using Agrobacterium tumefaciens. J. Gen. Breed. 54: 19–24.Google Scholar
  32. Tran Thanh Van K. 1973a. In vitro de novo flower, bud, root and callus differentiation from excised epidermal tissue. Nature 246: 44–45.Google Scholar
  33. Tran Thanh Van K. 1973b. Direct flower neoformation from superficial tissues of small explant of Nicotiana tabacum L. Planta 115: 87–92.Google Scholar
  34. Tran Thanh Van K. 1980. Control of morphogenesis by inherent and exogenously applied factors in thin cell layers. Intl. Rev. Cytol. Suppl. 11A: 175–194.Google Scholar
  35. Tran Thanh Van K. and Bui V.L. 2000. Current status of thin cell layer method for the induction of organogenesis or somatic embryogenesis. In: Mohan S.J., Gupta P.K. and Newton R.J. (eds), Somatic embryogenesis in woody plants. Vol. 6. Kluwer Academic Publishers, Dordrecht, pp. 51–92.Google Scholar
  36. Tran Thanh Van K., Toubart P. and Cousson A. 1985. Manipulation of the morphogenetic pathways of tobacco explants by oligosaccharins. Nature 314: 615–617.Google Scholar
  37. Young K.J., Jung P.S., Young U.B., Ho P.C., Soo C.Y. and Sheop S.J. 1998. Transformation of chrysanthemum by Agrobacterium tumefaciens with three different types of vectors. J. Kor. Soc. Hort. Sci. 39: 360–366.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Jaime A. Teixeira da Silva
    • 1
  1. 1.Department of Horticulture, Faculty of AgricultureKagawa UniversityIkenobeJapan

Personalised recommendations