Cellular and Molecular Neurobiology

, Volume 22, Issue 5–6, pp 611–632 | Cite as

Brain Oscillations, Medium Spiny Neurons, and Dopamine

  • M. G. Murer
  • K. Y. Tseng
  • F. Kasanetz
  • M. Belluscio
  • L. A. Riquelme
Commentary

Abstract

1. The striatum is part of a multisynaptic loop involved in translating higher order cognitive activity into action. The main striatal computational unit is the medium spiny neuron, which integrates inputs arriving from widely distributed cortical neurons and provides the sole striatal output.

2. The membrane potential of medium spiny neurons' displays shifts between a very negative resting state (down state) and depolarizing plateaus (up states) which are driven by the excitatory cortical inputs.

3. Because striatal spiny neurons fire action potentials only during the up state, these plateau depolarizations are perceived as enabling events that allow information processing through cerebral cortex – basal ganglia circuits. In vivo intracellular recording techniques allow to investigate simultaneously the subthreshold behavior of the medium spiny neuron membrane potential (which is a “reading” of distributed patterns of cortical activity) and medium spiny neuron firing (which is an index of striatal output).

4. Recent studies combining intracellular recordings of striatal neurons with field potential recordings of the cerebral cortex illustrate how the analysis of the input–output transformations performed by medium spiny neurons may help to unveil some aspects of information processing in cerebral cortex – basal ganglia circuits, and to understand the origin of the clinical manifestations of Parkinson's disease and other neurologic and neuropsychiatric disorders that result from alterations in dopamine-dependent information processing in the cerebral cortex – basal ganglia circuits.

striatal medium spiny neuron cerebral cortex in vivo intracellular recording Parkinson's disease EEG 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Abercrombie, E.D., Bonatz, A. E., and Zigmond, M.J. (1990). Effects of L-dopa on extracellular dopamine in striatum of normal and 6-hydroxydopamine-treated rats. Brain Res. 525:36–44.Google Scholar
  2. Albin, R. L., Young, A. B., and Penney, J. B. (1989). The functional anatomy of basal ganglia disorders. Trends Neurosci. 12:366–375.Google Scholar
  3. Alexander, G. E., and Crutcher, M. D. (1990). Preparation for movement: Neural representations of intended direction in three motor areas of the monkey. J. Neurophysiol. 64:133–150.Google Scholar
  4. Alexander, G. E., DeLong, M. R., and Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci. 9:357–381.Google Scholar
  5. Apicella, P., Scarnati, E., Ljungberg, T., and Schultz, W. (1992). Neuronal activity in monkey striatum related to the expectation of predictable enviromental events. J. Neurophysiol. 68:945–960.Google Scholar
  6. Arbuthnott, G. W., Ingham, C. A., and Wickens, J. R. (2000). Dopamine and synaptic plasticity in the neostriatum. J. Anat. 196:587–596.Google Scholar
  7. Ashby, P., Paradiso, G., Saint-Cyr, J. A., Chen, R., Lang, A. E., and Lozano, A. M. (2001). Potentials recorded at the scalp by stimulation near thehumansubthalamic nucleus. Clin. Neurophysiol. 112:431–437.Google Scholar
  8. Bar-Gad, I., and Bergman, H. (2001). Stepping out of the box: Information processing in the neural networks of the basal ganglia. Curr. Opin. Neurobiol. 11:689–695.Google Scholar
  9. Bergman, H., Wichmann, T., and DeLong, M.R. (1990). Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 249:1436–1438.Google Scholar
  10. Bergman, H., Wichmann, T., Karmon, B., and DeLong, M. R. (1994). The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. J. Neurophysiol. 72:507–520.Google Scholar
  11. Bernheimer, H., Birkmayer, W., Hornykiewicz, O., Jellinger, K., and Seitelberger, F. (1973). Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J. Neurol. Sci. 20:415–455.Google Scholar
  12. Bolam, J. P., Hanley, J. J., Booth, P. A., and Bevan, M.D. (2000). Synaptic organisation of the basal ganglia. J. Anat. 196:527–542.Google Scholar
  13. Boussaoud, D., and Kermadi, I. (1997). The primate striatum: Neuronal activity in relation to spatial attention versus motor preparation. Eur. J. Neurosci. 9:2152–2168.Google Scholar
  14. Brown, P. (2000). Cortical drives to human muscle: The Piper and related rhythms. Prog. Neurobiol. 60:97–108.Google Scholar
  15. Brown, P., and Marsden, C. D. (1998).What do the basal ganglia do? Lancet 351:1801–1804.Google Scholar
  16. Brown, P., Oliviero, A., Mazzone, P., Insola, A., Tonali, P., and Di Lazzaro, V. (2001). Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson's disease. J. Neurosci. 21:1033–1038.Google Scholar
  17. Brown, L. L., Schneider, J. S., and Lidsky, T. I. (1997). Sensory and cognitive functions of the basal ganglia. Curr. Opin. Neurobiol. 7:157–163.Google Scholar
  18. Calabresi, P., Centonze, D., and Bernardi, G. (2000). Electrophysiology of dopamine in normal and denervated striatum. Trends Neurosci. 23(Suppl. 10):S57–S63.Google Scholar
  19. Calabresi, P., Mercuri, N. B., Stefani, A., and Bernardi, G. (1990). Synaptic and intrinsic control of membrane excitability of neostriatal neurons. I. An in vivo analysis. J. Neurophysiol. 63:651–662.Google Scholar
  20. Cassidy, M., Mazzone, P., Oliviero, A., Insola, A., Tonali, P., Lazzaro, V. D., and Brown, P. (2002). Movement-related changes in synchronization in the human basal ganglia. Brain 125:1235–1246.Google Scholar
  21. Centonze, D., Picconi, B., Gubellini, P., Bernardi, G., and Calabresi, P. (2001). Dopaminergic control of synaptic plasticity in the dorsal striatum. Eur. J. Neurosci. 13:1071–1077.Google Scholar
  22. Cepeda, C., and Levine, M. S. (1998). Dopamine and N-methyl-D-aspartate receptor interactions in the neostriatum. Dev. Neurosci. 20:1–18.Google Scholar
  23. Cepeda,C., Walsh, J. P., Hull, C.D., Howard, S.G., Buchwald, N. A., and Levine, M. S. (1989). Dye-coupling in the neostriatum of the rat. I. Modulation by dopamine-depleting lesions. Synapse 4:229–237.Google Scholar
  24. Cowan, R. L., and Wilson, C. J. (1994). Spontaneous firing patterns and axonal projections of single corticostriatal neurons in the rat medial agranular cortex. J. Neurophysiol. 71:17–32.Google Scholar
  25. Davis, K. D., Taub, E., Houle, S., Lang, A. E., Dostrovsky, J. O., Tasker, R. R., and Lozano, A. M. (1997). Globus pallidus stimulation activates the cortical motor system during alleviation of parkinsonian symptoms. Nat. Med. 3:671–674.Google Scholar
  26. Engel, A. K., Fries, P., and Singer,W. (2001). Dynamic predictions: Oscillations and synchrony in top–down processing. Nat. Rev. Neurosci. 2:704–716.Google Scholar
  27. Fearnley, J. M., and Lees, A. J. (1991). Ageing and Parkinson's disease: Substantia nigra regional selectivity. Brain 114:2283–2301.Google Scholar
  28. Feder, R., and Ranck, J. B., Jr. (1973). Studies on single neurons in dorsal hippocampal formation and septum in unrestrained rats. II. Hippocampal slow waves and theta cell firing during bar pressing and other behaviors. Exp. Neurol. 41: 532–555.Google Scholar
  29. Filion, M., and Tremblay, L. (1991). Abnormal spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism. Brain Res. 547:142–151.Google Scholar
  30. Filion, M., Tremblay, L., and Bedard, P. J. (1991). Effects of dopamine agonists on the spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism. Brain Res. 547:152–161.Google Scholar
  31. Goldberg, J. A., Boraud, T., Maraton, S., Haber, S. N., Vaadia, E., and Bergman, H. (2002). Enhanced synchrony among primary motor cortex neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine primate model of Parkinson's disease. J. Neurosci. 22:4639–4653.Google Scholar
  32. Gonon, F. (1997). Prolonged and extrasynaptic excitatory action of dopamine mediated by D1 receptors in the rat striatum in vivo. J. Neurosci. 17:5972–5978.Google Scholar
  33. Goto, Y., and O'Donnell, P. (2001a). Synchronous activity in the hippocampus and nucleus accumbens in vivo. J. Neurosci. 21:RC131.Google Scholar
  34. Goto, Y., and O'Donnell, P. (2001b). Network synchrony in the nucleus accumbens in vivo. J. Neurosci. 21:4498–4504.Google Scholar
  35. Grace, A. A. (1991). Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: A hypothesis for the etiology of schizophrenia. Neuroscience 41:1–24.Google Scholar
  36. Graybiel, A. M., Aosaki, T., Flaherty, A.W., and Kimura, M. (1994). The basal ganglia and adaptive motor control. Science 265:1826–1831.Google Scholar
  37. Graybiel, A. M., and Rauch, S. L. (2000). Toward a neurobiology of obsessive–compulsive disorder. Neuron 28:343–347.Google Scholar
  38. Groves, P. M. (1983). A theory of the functional organization of the neostriatal control of voluntary movement. Brain. Res. Rev. 5:109–132.Google Scholar
  39. Gurney, K., Prescott, T. J., and Redgrave, P. (2001).Acomputational model of action selection in the basal ganglia. I. A new functional anatomy. Biol. Cybern. 84:401–410.Google Scholar
  40. Herculano-Houzel, S., Munk, M. H. J., Neuenschwander, S., and Singer,W. (1999). Precisely synchronized oscillatory firing patterns require electroencephalographic activation. J. Neurosci. 19:3992–4010.Google Scholar
  41. Hernandez-Lopez, S., Bargas, J., Surmeier, D. J., Reyes, A., and Galarraga, E. (1997). D1 receptor activation enhances evoked discharge in neostriatal medium spiny neurons by modulating an L-type Ca2C conductance. J. Neurosci. 17:3334–3342.Google Scholar
  42. Hikosaka, O., Takikawa, Y., and Kawagoe, R. (2000). Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol. Rev. 80:953–978.Google Scholar
  43. Hollerman, J. R., Tremblay, L., and Schultz, W. (2000). Involvement of basal ganglia and orbitofrontal cortex in goal-directed behavior. Prog. Brain Res. 126:193–215.Google Scholar
  44. Houk, J. C., and Wise, S. P. (1995). Distributed modular architectures linking basal ganglia, cerebellum and cerebral cortex: Their role in planning and conditioning action. Cereb. Cortex 5:95–110.Google Scholar
  45. Hull, C. D., Bernardi, G., and Buchwald, N. A. (1970). Intracellular responses of caudate neurons to brain stem stimulation. Brain Res. 22:163–179.Google Scholar
  46. Hurtado, J. M., Gray, C. M., Tamas, L. B., and Sigvardt, K. A. (1999). Dynamics of tremor-related oscillations in the human globus pallidus: A single case study. Proc. Natl. Acad. Sci. U.S.A. 96:1674–1679.Google Scholar
  47. Joel, D., and Weiner, I. (1994). The organization of the basal ganglia-thalamocortical circuits: Open interconnected rather than closed segregated. Neuroscience 63:363–379.Google Scholar
  48. Kalivas, P.W., and Nakamura, M. (1999). Neural systems for behavioral activation and reward. Curr. Opin. Neurobiol. 9:223–227.Google Scholar
  49. Kaneko, S., Hikida, T., Watanabe, D., Ichinose, H., Nagatsu, T., Kreitman, R. J., Pastan, I., and Nakanishi, S. (2000). Synaptic integration mediated by striatal cholinergic interneurons in basal ganglia function. Science 289:633–637.Google Scholar
  50. Kasanetz, F., Riquelme, L. A., and Murer, M. G. (2002). Disruption of the two-state membrane potential of striatal neurones during cortical desynchronisation in anaesthetised rats. J. Physiol. 543:577–589.Google Scholar
  51. Kawaguchi, Y., Wilson, C. J., Augood, S. J., and Emson, P. C. (1995). Striatal interneurones: Chemical, physiological and morphological characterization. Trends Neurosci. 18:527–535.Google Scholar
  52. Kiyatkin, E. A., and Rebec, G. V. (1999). Striatal neuronal activity and responsiveness to dopamine and glutamate after selective blockade ofD1andD2dopamine receptors in freely moving rats. J. Neurosci. 19:3594–3609.Google Scholar
  53. Koos, T., and Tepper, J. M. (1999). Inhibitory control of neostriatal projection neurons by GABAergic interneurons. Nat. Neurosci. 2:467–472.Google Scholar
  54. Koos, T., and Tepper, J.M. (2002). Dual cholinergic control of fast-spiking interneurons in the neostriatum. J. Neurosci. 22:529–535.Google Scholar
  55. Leung, L. S., and Yim, C. Y. (1993). Rhythmic delta-frequency activities in the nucleus accumbens of anesthetized and freely moving rats. Can. J. Physiol. Pharmacol. 71:311–320.Google Scholar
  56. Levy, R., Ashby, P., Hutchison, W. D., Lang, A. E., Lozano, A. M., and Dostrovsky, J. O. (2002a). Dependence of subthalamic nucleus oscillations on movement and dopamine in Parkinson's disease. Brain 125:1196–1209.Google Scholar
  57. Levy, R., Dostrovsky, J. O., Lang, A. E., Sime, E., Hutchison, W. D., and Lozano, A. M. (2001). Effects of apomorphine on subthalamic nucleus and globus pallidus internus neurons in patients with Parkinson's disease. J. Neurophysiol. 86:249–260.Google Scholar
  58. Levy, R., Hutchison, W. D., Lozano, A. M., and Dostrovsky, J. O. (2000). High-frequency synchronization of neuronal activity in the subthalamic nucleus of parkinsonian patients with limb tremor. J. Neurosci. 20:7766–7775.Google Scholar
  59. Levy, R., Hutchison, W.D., Lozano, A. M., and Dostrovsky, J.O. (2002b). Synchronized neuronal discharge in the basal ganglia of parkinsonian patients is limited to oscillatory activity. J. Neurosci. 22:2855–2861.Google Scholar
  60. Lewis, B. L., and O'Donnell, P. (2000). Ventral tegmental area afferents to the prefrontal cortex maintain membrane potential “up” states in pyramidal neurons via D(1) dopamine receptors. Cereb Cortex 10:1168–1175.Google Scholar
  61. Limousin, P., Pollak, P., Benazzouz, A., Hoffmann, D., Le Bas, J. F., Broussolle, E., Perret, J. E., and Benabid, A. L. (1995). Effect of parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet 345:91–95.Google Scholar
  62. Lopes da Silva, F., Pijn, J. P., and Boeijinga, P. (1989). Interdependence ofEEGsignals: Linear vs non-linear associations and the significance of time delays and phase shifts. Brain Topogr. 2:9–18.Google Scholar
  63. Lopes da Silva, F. H., Witter, M. P., Boeijinga, P. H., and Lohman, A. H. (1990). Anatomic organization and physiology of the limbic cortex. Physiol. Rev. 70:453–511.Google Scholar
  64. Lovinger, D. M., and Tyler, E. (1996). Synaptic transmission and modulation in the neostriatum. Int. Rev. Neurobiol. 39:77–111.Google Scholar
  65. MacLeod, N. K., Ryman, A., and Arbuthnott, G. W. (1990). Electrophysiological properties of nigrothalamic neurons after 6-hydroxydopamine lesions in the rat. Neuroscience 38:447–456.Google Scholar
  66. Magill, P. J., Bolam, J. P., and Bevan, M. D. (2001). Dopamine regulates the impact of the cerebral cortex on the subthalamic nucleus-globus pallidus network. Neuroscience 106:313–330.Google Scholar
  67. Mahon, S., Delord, B., Deniau, J. M., and Charpier, S. (2000). Intrinsic properties of rat striatal output neurones and time-dependent facilitation of cortical inputs in vivo. J. Physiol. 527:345–354.Google Scholar
  68. Mahon, S., Deniau, J. M., and Charpier, S. (2001). Relationship between EEG potentials and intracellular activity of striatal and cortico-striatal neurons: An in vivo study under different anesthetics. Cereb. Cortex 11:360–373.Google Scholar
  69. Marsden, J. F., Limousin-Dowsey, P., Ashby, P., Pollak, P., and Brown, P. (2001). Subthalamic nucleus, sensorimotor cortex and muscle interrelationships in Parkinson's disease. Brain 124:378–388.Google Scholar
  70. McCormick, D. A., and Bal, T. (1997). Sleep and arousal: Thalamocortical mechanisms. Annu. Rev. Neurosci. 20:185–215.Google Scholar
  71. Mink, J. W. (1996). The basal ganglia: Focused selection and inhibition of competing motor programs. Prog. Neurobiol. 50:381–425.Google Scholar
  72. Moruzzi, G., and Magoun, H. W. (1949). Brain stem reticular formation and activation of the EEG. Electroencephalogr. Clin. Neurophysiol. 1:455–473.Google Scholar
  73. Murer, M. G., Riquelme, L. A., Tseng, K. Y., and Pazo, J. H. (1997). Substantia nigra pars reticulata single unit activity in normal and 6OHDA-lesioned rats: Effects of intrastriatal apomorphine and subthalamic lesions. Synapse 27:278–293.Google Scholar
  74. Nambu, A., Tokuno, H., Hamada, I., Kita, H., Imanishi, M., Akazawa, T., Ikeuchi, Y., and Hasegawa, N. (2000). Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey. J. Neurophysiol. 84:289–300.Google Scholar
  75. Nestler, E. J. (2001). Molecular basis of long-term plasticity underlying addiction. Nat. Rev. Neurosci. 2:119–128.Google Scholar
  76. Nicola S. M., Surmeier J., and Malenka R. C. (2002). Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu Rev Neurosci. 23:185–215.Google Scholar
  77. Nicola, S. M., and Malenka, R. C. (1997). Dopamine depresses excitatory and inhibitory synaptic transmission by distinct mechanisms in the nucleus accumbens. J. Neurosci. 17:5697–5710.Google Scholar
  78. Ni, Z., Bouali-Benazzouz, R., Gao, D., Benabid, A. L., and Benazzouz, A. (2000). Changes in the firing pattern of globus pallidus neurons after the degeneration of nigrostriatal pathway are mediated by the subthalamic nucleus in the rat. Eur. J. Neurosci. 12:4338–4344.Google Scholar
  79. Nini, A., Feingold, A., Slovin, H., and Bergman, H. (1995). Neurons in the globus pallidus do not show correlated activity in the normal monkey, but phase-locked oscillations appear in the MPTP model of parkinsonism. J. Neurophysiol. 74:1800–1805.Google Scholar
  80. O'Donnell, P. (1999). Ensemble coding in the nucleus accumbens. Psychobiology 27:187–197.Google Scholar
  81. O'Donnell, P., and Grace, A. A. (1995). Synaptic interactions among excitatory afferents to nucleus accumbens neurons: hippocampal gating of prefrontal cortical input. J. Neurosci. 15:3622–3639.Google Scholar
  82. Onn, S. P., and Grace, A.A. (1999). Alterations in electrophysiological activity and dye coupling of striatal spiny and spiny neurons in dopamine depleted rat striatum recorded in vivo. Synapse 33:1–15.Google Scholar
  83. Pacheco-Cano, M. T., Bargas, J., Hernández-López, S., Tapia, D., and Galarraga, E. (1996). Inhibitory action of dopamine involves a subthreshold Cs(C)-sensitive conductance in neostriatal neurons. Exp. Brain Res. 110:205–211.Google Scholar
  84. Pan, H. S., and Walters, J. R. (1988). Unilateral lesion of the nigrostriatal pathway decreases the firing rate and alters the firing pattern of globus pallidus neurons in the rat. Synapse 2:650–656.Google Scholar
  85. Pennartz, C. M., Groenewegen, H. J., and Lopes da Silva, F. H. (1994).The nucleus accumbens as a complex of functionally distinct neuronal ensembles: an integration of behavioural, electrophysiological and anatomical data. Prog. Neurobiol. 42:719–761.Google Scholar
  86. Plenz, D., and Aertsen, A. (1996). Neural dynamics in cortex-striatum co-cultures–II. Spatiotemporal characteristics of neuronal activity. Neuroscience 70:893–924.Google Scholar
  87. Plenz, D., and Kitai, S. T. (1998). Up and down states in striatal medium spiny neurons simultaneously recorded with spontaneous activity in fast-spiking interneurons studied in cortex-striatum-substantia nigra organotypic cultures. J. Neurosci. 18:266–283.Google Scholar
  88. Plenz, D., and Kitai, S. T. (1999). A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. Nature 400:677–682.Google Scholar
  89. Plenz, D., and Kitai, S. T. (2000). Adaptive classification of cortical input to the striatum by competitive learning. In Brain Dynamics and the Striatal Complex, Harwood Academic, Amsterdam, pp. 165–177.Google Scholar
  90. Pulvermuller, F., Birbaumer, N., Lutzenberger, W., and Mohr, B. (1997). High-frequency brain activity: Its possible role in attention, perception and language processing. Prog. Neurobiol. 52:427–445.Google Scholar
  91. Raz, A., Feingold, A., Zelanskaya, V., Vaadia, E., and Bergman, H. (1996). Neuronal synchronization of tonically active neurons in the striatum of normal and parkinsonian primates. J. Neurophysiol. 76:2083–2088.Google Scholar
  92. Raz, A., Frechter-Mazar, V., Feingold, A., Abeles, M., Vaadia, E., and Bergman, H. (2001). Activity of pallidal and striatal tonically active neurons is correlated in MPTP-treated monkeys but not in normal monkeys. J. Neurosci. 21:RC128.Google Scholar
  93. Raz, A., Vaadia, E., and Bergman, H. (2000). Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine vervet model of parkinsonism. J. Neurosci. 20:8559–8571.Google Scholar
  94. Reynolds, J. N., Hyland, B. I., and Wickens, J. R. (2001). A cellular mechanism of reward-related learning. Nature 413:67–70.Google Scholar
  95. Robinson, T. E., Mocsary, Z., Camp, D. M., and Whishaw, I. Q. (1994). Time course of recovery of extracellular dopamine following partial damage to the nigrostriatal dopamine system. J. Neurosci. 14:2687–2696.Google Scholar
  96. Robinson, T. E., and Whishaw, I.Q. (1988). Normalization of extracellular dopamine in striatum following recovery from a partial unilateral 6-OHDA lesion of the substantia nigra: A microdialysis study in freely moving rats. Brain Res. 450:209–224.Google Scholar
  97. Rodriguez, E., George, N., Lachaux, J. P., Martinerie, J., Renault, B., and Varela, F. J. (1999). Perception's shadow: Long-distance synchronization of human brain activity. Nature 397:430–433.Google Scholar
  98. Romo, R., and Schultz, W. (1992). Role of primate basal ganglia and frontal cortex in the internal generation of movements. III. Neuronal activity in the supplementary motor area. Exp. Brain. Res. 91:396–407.Google Scholar
  99. Saka, E., Iadarola, M., Fitzgerald, D. J., and Graybiel, A. M. (2002). Local circuit neurons in the striatum regulate neural and behavioral responses to dopaminergic stimulation. Proc. Natl. Acad. Sci. U.S.A. 99:9004–9009.Google Scholar
  100. Salinas, E., Opris, I., Zainos, A., Hernández, A., and Romo, R. (2000). Motor and non-motor roles of the corico-basal ganglia circuitry. In Brain Dynamics and the Striatal Complex, Harwood Academic, Amsterdam, pp. 237–255.Google Scholar
  101. Schultz,W., and Romo, R. (1992). Role of primate basal ganglia and frontal cortex in the internal generation of movements. I. Preparatory activity in the anterior striatum. Exp. Brain Res. 91:363–384.Google Scholar
  102. Sharpe, N. A., and Tepper, J. M. (1998). Postnatal development of excitatory synaptic input to the rat neostriatum: An electron microscopic study. Neuroscience 84:1163–1175.Google Scholar
  103. Smith, Y., Bevan, M. D., Shink, E., and Bolam, J. P. (1998). Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience 86:353–387.Google Scholar
  104. Steriade,M. (2000). Corticothalamic resonance, states of vigilance and mentation. Neuroscience 101:243–276.Google Scholar
  105. Steriade, M., Curró Dossi, R., Paré, D., and Oakson,G. (1991). Fast oscillations (20–40 Hz) in thalamocortical systems and their potentiation by mesopontine cholinergic nuclei in the cat. Proc. Natl. Acad. Sci. U.S.A. 88:4396–4400.Google Scholar
  106. Steriade, M., Timofeev, I., and Grenier, F. (2001). Natural waking and sleep states: A view from inside neocortical neurons. J. Neurophysiol. 85:1969–1985.Google Scholar
  107. Stern, E. A., Jaeger, D., and Wilson, C. J. (1998). Membrane potential synchrony of simultaneously recorded striatal spiny neurons in vivo. Nature 394:475–478.Google Scholar
  108. Stern, E. A., Kincaid, A. E., and Wilson, C. J. (1997). Spontaneous subthreshold membrane potential fluctuations and action potential variability of rat corticostriatal and striatal neurons in vivo. J. Neurophysiol. 77:1697–1715.Google Scholar
  109. Surmeier, D. J., Bargas, J., Hemmings, H. C., Jr., Nairn, A. C., and Greengard, P. (1995). Modulation of calcium currents by aD1 dopaminergic protein kinase/phosphatase cascade in rat neostriatal neurons. Neuron 14:385–397.Google Scholar
  110. Surmeier, D. J., and Kitai, S. T. (1993). D1 and D2 dopamine receptor modulation of sodium and potassium currents in rat neostriatal neurons. Prog. Brain Res. 99:309–324.Google Scholar
  111. Tabuchi, E. T., Mulder, A. B., and Wiener, S. I. (2000). Position and behavioral modulation of synchronization of hippocampal and accumbens neuronal discharges in freely moving rats. Hippocampus 10:717–728.Google Scholar
  112. Tepper, J. M., Sharpe, N. A., Koos, T. Z., and Trent, F. (1998). Postnatal development of the rat neostriatum: Electrophysiological, light-and electron-microscopic studies. Dev. Neurosci. 20:125–145.Google Scholar
  113. Tseng, K. Y., Kasanetz, F., Kargieman, L., Riquelme, L. A., and Murer, M. G. (2001a). Cortical slow oscillatory activity is reflected in the membrane potential and spike trains of striatal neurons in rats with chronic nigrostriatal lesions. J. Neurosci. 21:6430–6439.Google Scholar
  114. Tseng, K. Y., Kasanetz, F., Kargieman, L., Pazo, J. H., Murer, M. G., and Riquelme, L. A. (2001b). Subthalamic nucleus lesions reduce low frequency oscillatory firing of substantia nigra pars reticulata neurons in a rat model of Parkinson's disease. Brain Res. 904:93–103.Google Scholar
  115. Tseng, K. Y., Riquelme, L. A., Belforte, J. E., Pazo, J. H., and Murer, M. G. (2000). Substantia nigra pars reticulata units in 6-hydroxydopamine-lesioned rats: Responses to striatal D2 dopamine receptor stimulation and subthalamic lesions. Eur. J. Neurosci. 12:247–256.Google Scholar
  116. Tseng, K. Y., Riquelme, L. A., and Murer, M. G. (in press). Impact of slow cortical rhythms on basal ganglia output nuclei activity in experimental parkinsonism. In Wickens, J. R. (ed.), IBAGS VII, Kluwer Academic/Plenum, New York.Google Scholar
  117. Tseng, K.Y., Riquelme, L. A., and Murer, M.G. I. (2002). Impact of slow cortical rhythms on basal ganglia output nuclei activity in experimental parkinsonism. In Advances in Behavioral Biology, volume 52, The Basal Ganglia VII, Section V, CIRCUITRY, paginas 445–454. Editado por Louise FB Nicholson y Richard LM Faull, Kluwer Academic/Plenum Publishers, New York.Google Scholar
  118. Varela, F., Lachaux, J. P., Rodriguez, E., and Martinerie, J. (2001). The brainweb: Phase synchronization and large-scale integration. Nat. Rev. Neurosci. 2:229–239.Google Scholar
  119. Wichmann, T., and DeLong, M. R. (1996). Functional and pathophysiological models of the basal ganglia. Curr. Opin. Neurobiol. 6:751–758.Google Scholar
  120. Wickens, J. R. (1993). A Theory of the Striatum, Pergamon Press, Oxford.Google Scholar
  121. Williams,D., Tijssen, M., Van Bruggen, G., Bosch, A., Insola, A., Lazzaro, V.D., Mazzone, P., Oliviero, A., Quartarone, A., Speelman, H., and Brown, P. (2002). Dopamine-dependent changes in the functional connectivity between basal ganglia and cerebral cortex in humans. Brain 125:1558–1569.Google Scholar
  122. Wilson, C. J. (1993). The generation of natural firing patterns in neostriatal neurons. Prog. Brain Res. 99:277–297.Google Scholar
  123. Wilson, C. J., Chang, H. T., and Kitai, S. T. (1983). Disfacilitation and long-lasting inhibition of neostriatal neurons in the rat. Exp. Brain Res. 51:227–235.Google Scholar
  124. Wilson, C. J., and Groves, P. M. (1981). Spontaneous firing patterns of identified spiny neurons in the rat neostriatum. Brain Res. 220:67–80.Google Scholar
  125. Yim, C. Y., and Mogenson, G. J. (1988). Neuromodulatory action of dopamine in the nucleus accumbens: An in vivo intracellular study. Neuroscience 26:403–415.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • M. G. Murer
    • 1
  • K. Y. Tseng
    • 1
  • F. Kasanetz
    • 1
  • M. Belluscio
    • 1
  • L. A. Riquelme
    • 1
  1. 1.Departamento de Fisiología y Biofísica, Facultad de MedicinaUniversidad de Buenos Aires, Paraguay 2155Buenos AiresArgentina

Personalised recommendations