Journal of Low Temperature Physics

, Volume 116, Issue 1–2, pp 99–132 | Cite as

A Scaling Calculation of the Scattering of 4He Atomic Beams

  • H. H. Hjort
  • S. A. Viznyuk
  • D. O. Edwards
Article

Abstract

We describe a simulation of the scattering in beams of helium atoms. The number of atoms N in the beams is reduced by a large scaling factor λ while the collision cross-section is increased by λ. This leaves the rate of scattering for each particle unchanged. As an example, we predict the outcome of a low temperature atomic beam experiment to measure the4He-4He atomic scattering cross-section σ at low energies. Because of the existence of a very weakly bound dimer, the low energy cross-section is expected to be unusually large, ∼1.83 × 105Å2. In the simulation N/λ is small enough for the trajectories of all the scaled atoms to be calculated numerically. The simulation shows that the experiment is quite practicable. The proposed apparatus is just over 20 cm long, and a few centimeters wide, small enough to fit in a dilution refrigerator. The heaters and bolometers are assumed to be similar to those used in previous low temperature scattering experiments. We show that, using low intensity beams, the cross-section can be measured as a function of the relative velocity vrbetween ∼2 and ∼8 m/sec, corresponding to relative energies between ∼1 and ∼16 mK. By fitting σ(vr) one can determine the scattering length and effective range of the interaction. We predict that, at high intensity where multiple scattering is very important, the two beams coalesce into one.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    J. Wang, V. A. Shamamian, B. R. Thomas, J. M. Wilkinson, J. R. Riley, C. F. Giese, and W. R. Gentry, Phys. Rev. Lett. 60, 696 (1988).Google Scholar
  2. 2.
    J. C. Mester, E. S. Meyer, M. W. Reynolds, T. E. Huber, Z. Zhao, B. Freedman, J. Kim, and I. F. Silvera, Phys. Rev. Lett. 71, 1343 (1993).Google Scholar
  3. 3.
    J. C. Mester, E. S. Meyer, T. E. Huber, M. W. Reynolds, and I. F. Silvera, J. Low Temp. Phys. 89, 569 (1992).Google Scholar
  4. 4.
    F. Luo, G. C. McBane, G. Kim, and C. F. Giese, J. Chem. Phys. 98, 3564 (1993).Google Scholar
  5. 5.
    F. Luo, C. F. Giese, and W. R. Gentry, J. Chem. Phys. 104, 1151 (1996).Google Scholar
  6. 6.
    W. Schöllkopf and J. P. Toennies, J. Chem. Phys. 104, 1155 (1996).Google Scholar
  7. 7.
    J. P. Toennies and K. Winkelmann, J. Chem. Phys. 66, 3965 (1977).Google Scholar
  8. 9.
    G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Oxford University Press (1994).Google Scholar
  9. 10.
    E. Meiburg, Phys. Fluids 29, 3107 (1986).Google Scholar
  10. 12.
    R. A. Aziz, F. R. W. McCourt, and C. C. K. Wong, Mol. Phys. 61, 1487 (1987).Google Scholar
  11. 13.
    R. A. Aziz and M. J. Slaman, Metrologia 27, 211 (1990).Google Scholar
  12. 14.
    T. Korona, H. L. Williams, R. Bukowski, B. Jeziorski, and K. Szalewicz, J. Chem. Phys. 106, 5109 (1997).Google Scholar
  13. 15.
    A. R. Janzen and R. A. Aziz, J. Chem. Phys. 107, 914 (1997).Google Scholar
  14. 16.
    R. de Bruyn Ouboter and C. N. Yang, Physica B 144, 127 (1987).Google Scholar
  15. 17.
    E. S. Meyer, J. C. Mester, and I. F. Silvera, J. Chem.Phys 100, 4021 (1994); F. Luo, G. C. McBane, G. Kim, C. F. Giese, and W. R. Gentry, J. Chem. Phys. 100, 4023 (1994).Google Scholar
  16. 18.
    Y. H. Uang and W. C. Stwalley, J. Phys. (Paris), 41, C7–33 (1980).Google Scholar
  17. 19.
    See, e.g., E. Merzbacher, Quantum Mechanics, Chap. 11, John Wiley (1970).Google Scholar
  18. 20.
    E. S. Meyer, Collision Phenomena in Helium and Atomic Hydrogen: Quantum Gases at Low Temperature, Ph.D. thesis, Harvard University (1993).Google Scholar
  19. 21.
    H. A. Bethe, Phys. Rev. 76, 38 (1949).Google Scholar
  20. 22.
    J. Lekner, Mol. Phys. 23, 619 (1972).Google Scholar
  21. 23.
    M. J. Jamieson, A. Dalgarno, and M. Kimura, Phys. Rev. A 51, 2626 (1995).Google Scholar
  22. 24.
    D. T. Meyer, H. Meyer, W. Hallidy, and C. F. Kellers, Cryogenics 3, 150 (1963).Google Scholar
  23. 25.
    D. O. Edwards, P. Fatouros, G. G. Ihas, P. Mrozinski, S. Y. Shen, F. M. Gasparini, and C. P. Tam, Phys. Rev. Lett. 34, 1153 (1975); D. O. Edwards and P. P. Fatouros, Phys. Rev. B 17, 2147 (1978).Google Scholar
  24. 26.
    V. U. Nayak, D. O. Edwards, and N. Masuhara, Phys. Rev. Lett. 50, 990 (1983).Google Scholar
  25. 27.
    K. Andres, R. C. Dynes, and V. Narayanamurti, Phys. Rev. A 8, 2501 (1973).Google Scholar
  26. 28.
    J. Eckardt, D. O. Edwards, F. M. Gasparini, and S. Y. Shen, in Proc. 13th Int. Conf. on Low Temperature Physics LT-13, Vol. 518, K. D. Timmerhaus, W. J. O'Sullivan, and E. F. Hammel (eds.), Plenum, New York (1974).Google Scholar
  27. 30.
    The flow chart is similar to that in the classic work of B. J. Alder and T. E. Wainwright, J. Chem. Phys. 31, 459 (1959).Google Scholar
  28. 31.
    H. Kuze, Y. Oshima, and Y. Tanaka, Chem. Phys. Lett. 195, 400 (1992).Google Scholar
  29. 33.
    D. O. Edwards, G. G. Ihas, and C. P. Tam, Phys. Rev. B 16, 3122 (1977).Google Scholar
  30. 34.
    V. U. Nayak, The Scattering of 4 He Atoms off the Surface of Liquid 4 He at Grazing Angles of Incidence, Ph.D. thesis, The Ohio State University (1982).Google Scholar
  31. 35.
    See, e.g., M. Nahum and J. M. Martinis, Appl. Phys. Lett. 63, 3075 (1993).Google Scholar
  32. 36.
    F. J. Low and A. R. Hoffman, Appl. Optics 2, 649 (1963).Google Scholar
  33. 38.
    P. R. Bevington and D. K. Robinson, Data Reduction and Error Analysis for the Physical Sciences, Chap. 4, McGraw-Hill Book Company (1992).Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • H. H. Hjort
    • 1
  • S. A. Viznyuk
    • 1
  • D. O. Edwards
    • 1
  1. 1.Physics DepartmentThe Ohio State UniversityColumbusUSA

Personalised recommendations