Plasma Chemistry and Plasma Processing

, Volume 19, Issue 3, pp 421–443

Oxidation and Reduction Processes During NOx Removal with Corona-Induced Nonthermal Plasma

  • K. Yan
  • S. Kanazawa
  • T. Ohkubo
  • Y. Nomoto
Article

Abstract

In this paper, the NO-to-NO2conversion in various gaseous mixtures is experimentally investigated. Streamer coronas are produced with a dc-superimposed high-frequency ac power supply (10–60 kHz). According to NOxremoval experiments in N2+NOxand N2+O2+NOxgaseous mixtures, it is supposed that the reverse reaction NO2+O→NO+O2may not only limit NO2production in N2+NOxmixtures, but also increase the energy cost for NO removal. Oxygen could significantly suppress reduction reactions and enhance oxidation processes. The reduction reactions, such as N+NO→N2+O, induce negligible NO removal provided the O2concentration is larger than 3.6%. With adding H2O into the reactor, the produced NO2per unit removed NO can be significantly reduced due to NO2oxidation. NH3injection could also significantly decrease the produced NO2via NH and NH2- related reduction reactions. Almost 100% of NO2can be removed in gaseous mixtures of N2+O2+H2O+NO2with negligible NO production.

Streamer corona NOx removal nonthermal plasma oxidation reduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    B. M. Penetrante and S. E. Schultheis, Non-Thermal Plasma Techniques for Pollution Control, Springer-Verlag, Berlin (1993).Google Scholar
  2. 2.
    C. M. Nunez, G. H. Ramsey, W. H. Ponder, J. H. Abbott, L. E. Hamel, and P. H. Kariher, Air Waste 43, 242 (1993).Google Scholar
  3. 3.
    K. L. L. Vercammen, A. A. Berezin, F. Lox, and J. S. Chang, J. Adv. Oxid. Technol. 2, 312 (1997).Google Scholar
  4. 4.
    M. Rea, in Handbook of Electrostatic Processes, J. S. Chang, A. J. Kelly, and J. M. Crowley, eds., Marcel Dekker, New York (1995), pp. 607–617.Google Scholar
  5. 5.
    J. M. Rasmussen, Conf. Rec. IEEE IAS Annu. Meet. (1989), pp. 2180–2184.Google Scholar
  6. 6.
    Y. H. Song, W. H. Shin, Y. S. Choi, and S. J. Kim, J. Adv. Oxid. Technol. 2, 268 (1997).Google Scholar
  7. 7.
    Y. Wu, N. Wang, Y. Zhu, and Y. Zhang, J. Electrostat. 44, 11 (1998).Google Scholar
  8. 8.
    E. M. Van Veldhuizen, W. R. Rutgers, and V. A. Bityurin, Plasma Chem. Plasma Process. 16, 227 (1996).Google Scholar
  9. 9.
    V. Puchkarev and M. Gundersen, Appl. Phys. Lett. 71, 3364 (1997).Google Scholar
  10. 10.
    E. Sani, F. Mattachini, K. Yan, G. Gabetta, I. Gallimberti, M. Rea, U. Tromboni, J. Leonhardt, R. Rudolf, E. Marode, and P. Segur, in Proc. 11th Intern. Conf. Gas Discharge and Their Applications, Tokyo (1995), pp. 430–433.Google Scholar
  11. 11.
    A. Mizuno, K. Shimizu, T. Matsuoka, and S. Furuta, IEEE Trans. IAS 31, 1463 (1995).Google Scholar
  12. 12.
    J. O. Chae, Yu N. Desiaterik, and R. H. Amirov, Proc. 13th Intern. Symp. Plasma Chem. IV, 1790 (1997).Google Scholar
  13. 13.
    S. Broer, Th. Hammer, and T. Kishimoto, in Proc. 12th Intern. Conf. Gas Discharges and Their Applications, Greifswald, Germany (1997), pp. 188–191.Google Scholar
  14. 14.
    M. B. Chang, J. M. Kushner, and J. M. Rood, Environ. Sci. Technol. 26, 777 (1992).Google Scholar
  15. 15.
    S. Daito, F. Tochikubo, and T. Watanabe, Proc. 13th Intern. Symp. Plasma Chem., Beijing, China (1997), pp. 1799–1803.Google Scholar
  16. 16.
    S. K. Dhali and I. Sardja, J. Appl. Phys. 69, 6319 (1991).Google Scholar
  17. 17.
    M. B. Chang, J. H. Balbach, J. M. Rood, and J. M. Kushner, J. Appl. Phys. 69, 4409 (1991).Google Scholar
  18. 18.
    B. Pashaie, S. K. Dhali, and F. I. Honea, J. Phys. D: Appl. Phys. 27, 2107 (1994).Google Scholar
  19. 19.
    Y. Tanaka, Y. Ehara, H. Kishida, and T. Ito, Proc. XII Intern. Conf. Gas Discharge Applications, Greifswald, Germany (1997), pp. 304–307.Google Scholar
  20. 20.
    S. Kawabata, Y. Mochizuki, and T. Misaka, Proc. Workshop Non-Thermal Plasma Pollution Control, Institute of Electrostatics Japan (1995), pp. 72–76 (in Japan.).Google Scholar
  21. 21.
    Y. Yoshioka, H. Dohi, K. Minami, Y. Yagihashi, H. Kougeta, and T. Ishikawa, Intern. Symp. High Pressure Low Temp. Plasma Chem. HAKANE V,67 (1996), pp. 67–71.Google Scholar
  22. 22.
    P. P. M. Blom, Ph.D. Dissertation, Eindhoven University of Technology, Netherlands (1997).Google Scholar
  23. 23.
    K. Yan, H. Hui, M. Cui, J. Miao, X. Wu, C. Bao, and R. Li, J. Electrostat. 44, 17 (1998).Google Scholar
  24. 24.
    J. S. Chang, P. C. Looy, K. Nagai, T. Yoshioka, S. Aoki, and A. Maezawa, Conf. Rec. IEEE IAS Annu. Meet. (1994), pp. 1575–1582.Google Scholar
  25. 25.
    T. Ohkubo, S. Kanazawa, Y. Nomoto, J. S. Chang, and T. Adachi, IEEE Trans. IAS, 32, 1058 (1996).Google Scholar
  26. 26.
    S. Kanazawa, J. S. Chang, G. F. Round, G. Sheng, T. Ohkubo, Y. Nomoto, and T. Adachi, J. Electrostat. 40, 41, 651 (1997).Google Scholar
  27. 27.
    T. Ohkubo, K. Yan, D. Higashi, S. Kanazawa, Y. Nomoto, and J. S. Chang, J. Adv. Oxid. Technol. (1999), in press.Google Scholar
  28. 28.
    K. Yan, D. Higashi, S. Kanazawa, T. Ohkubo, Y. Nomoto, and J. S. Chang, Trans IEE Jpn. 188-A, 948 (1998).Google Scholar
  29. 29.
    K. Yan, T. Yamamoto, S. Kanazawa, T. Ohkubo, Y. Nomoto, and J. S. Chang, J. Electrostat. (1999), in press.Google Scholar
  30. 30.
    J. S. Chang, J. Y. Park, I. Tomicic, and G. F. Round, Proc. NEDO Symp. Non-Thermal Discharge Plasma Technol. Air Pollution Control, Oita, Japan (1997), pp. 26–36.Google Scholar
  31. 31.
    K. Urashima, Ph.D. Dissertation, Musashi Institute of Technology, Japan (1998).Google Scholar
  32. 32.
    M. A. Tas, R. van Hardeveld, and E. M. Van Veldhuizen, Plasma Chem. Plasma Process. 17, 371 (1997).Google Scholar
  33. 33.
    B. M. Penetrante, M. C. Hsiao, B. T. Merritt, G. E. Vogtlin, and P. H. Wallman, IEEE Trans. Plasma Sci. 23, 679 (1995).Google Scholar
  34. 34.
    M. C. Hsiao, B. M. Penetrante, B. T. Merritt, G. E. Vogtlin, and P. H. Wallman, J. Adv. Oxid. Technol. 2, 283 (1997).Google Scholar
  35. 35.
    M. Kurahashi, A. Gal, and M. Kuzumoto, Proc. IEEE Jpn. Annu. Meet. 1, 234 (1998).Google Scholar
  36. 36.
    T. Suzuki, H. Murakami, K. Takaki, and T. Fujiwara, IEE Jpn. 117-A, 1084 (1997).Google Scholar
  37. 37.
    I. Gallimberti, Pure Appl. Chem. 60, 663 (1998).Google Scholar
  38. 38.
    A. A. Kulikovsky, IEEE Trans. Plasma Sci. 25, 439 (1997).Google Scholar
  39. 39.
    J. Li, W. Sun, B. Pashaie, and S. K. Dhali, IEEE Trans. Plasma Sci. 23, 672 (1995).Google Scholar
  40. 40.
    J. J. Lowke and R. Morrow, IEEE Trans. Plasma Sci. 23, 661 (1995).Google Scholar
  41. 41.
    E. Marode, D. Djermoune, S. Samson, and C. Deniset, Proc. 11th Symp. Elementary Processes Chemical Reactions Low Temperature Plasma, June 22–26, Low Tatras (1998), pp. 93–108.Google Scholar
  42. 42.
    A. C. Gentile and M. J. Kushner, J. Appl. Phys. 78, 2074 (1995).Google Scholar
  43. 43.
    O. Eichwald, M. Yousfi, A. Hennad, and M. D. Benabdessadok, J. Appl. Phys. 82, 4781 (1997).Google Scholar
  44. 44.
    M. Yousfi and M. D. Benabdessadok, J. Appl. Phys. 80, 6619 (1996).Google Scholar
  45. 45.
    M. A. Tas, E. M. Van Veldhuizen, and W. R. Rutgers, J. Phys. D: Appl. Phys. 30, 1636 (1997).Google Scholar
  46. 46.
    B. M. Penetrante, J. N. Bardsley, and M. C. Hsiao, Jpn. J. Appl. Phys. 26, 5007 (1997).Google Scholar
  47. 47.
    F. Busi, M. D'Angelantonio, Q. G. Mulazzini, V. Raffaelli, and O. Tubertini, Radiat. Phys. Chem. 25, 47 (1985).Google Scholar
  48. 48.
    J. C. Person and D. O. Hum, Radiat. Phys. Chem. 31, 1 (1988).Google Scholar
  49. 49.
    H. Matzing, KfK, Kernforschungszentrum Karlsruhe, Germany, p. 4490 (1989).Google Scholar
  50. 50.
    J. S. Chang, J. Aerosol Sci. 20, 1087 (1989).Google Scholar
  51. 51.
    J. S. Chang and S. Masuda, Conf. Rec. IEEE IAS 1988 Meet. (1988), pp. 1599–1635.Google Scholar
  52. 52.
    W. L. Morgan, M. Jacob, and E. R. Fisher, Proc. 12th Intern. Symp. Plasma Chem. University of Minnesota (1995).Google Scholar
  53. 53.
    W. Niessen, M. Neiger, and R. Schruft, Proc. 12th Intern. Symp. Plasma Chem. University of Minnesota (1995), pp. 677–682.Google Scholar
  54. 54.
    G. Yu, A. Andrew, V. Levchenko, and V. A. Bityurin, Res. Rep. IVTAN No. 93/2, Moscow (1993).Google Scholar
  55. 55.
    E. M. Van Veldhuizen, W. R. Rutgers, V. A. Bityurin, Yu. V. Alekseev, A. N. Botcharov, and G. V. Naidis, Proc. 12th Intern. Conf. Gas Discharge Applications, Greifswald, Germany (1997), pp. 401–406.Google Scholar
  56. 56.
    G. Hartmann, Proc. 3rd Intern. Conf. Gas Discharges, IEE Conf. Publ. (1974), pp. 634–638.Google Scholar
  57. 57.
    N. Spyrou and C. Manassis, J. Phys. D: Appl. Phys. 22, 120 (1989).Google Scholar
  58. 58.
    N. Spyrou, B. Held, R. Peyrous, Ch. Manassis, and P. Pignolet, J. Phys. D: Appl. Phys. 25, 211 (1992).Google Scholar
  59. 59.
    K. Yan, E. M. Van Veldhuizen, A. H. F. M. Baede, Y. L. M. Creyghton, and W. R. Rutgers, Proc. 11th Intern. Symp. Plasma Chem. Loughborough, UK (1993), pp. 609–614.Google Scholar
  60. 60.
    Y. L. M. Creyghton, Ph.D. Dissertation, Eindhoven University of Technology (1994).Google Scholar
  61. 61.
    S. Pellerin, J. M. Cormier, F. Richard, K. Musiol, and J. Chapelle, J. Phys. D: Appl. Phys. 29, 726 (1996).Google Scholar
  62. 62.
    T. H. Teich, in Non-Thermal Plasma Techniques for Pollution Control, B. M. Penetrante and S. E. Schultheis, eds., Springer-Verlag, Berlin (1993), pp. 231–248.Google Scholar
  63. 63.
    A. Ershov and J. Borysow, J. Phys. D: Appl. Phys. 28, 68 (1995).Google Scholar
  64. 64.
    M. Garcia and B. Chang, Rept. DE95013293, Lawrence Livermore National Lab., Livermore, California (1995), 8 pp.Google Scholar
  65. 65.
    J. S. Chang, in Non-Thermal Plasma Techniques for Pollution Control, B. M. Penetrante and S. E. Schultheis, eds., Springer-Verlag, Berlin (1993), pp. 1–32.Google Scholar
  66. 66.
    H. F. Behbahani, A. Fontijn, K. Muller-Dethlefs, and J. F. Weinberg, Combust. Sci. Technol. 27, 123 (1982).Google Scholar
  67. 67.
    H. F. Behbahani, A. M. Warris, and J. F. Weinberg, Combust. Sci. Technol. 30, 289 (1983).Google Scholar
  68. 68.
    T. Morimune and Y. Ejiri, JSME Intern. J. Fluids Thermal Engin. 37, 945 (1994).Google Scholar
  69. 69.
    S. C. Yao and T. Russell, Rept. DE93040580, Carnegie-Mellon University, Pittsburgh, Pennsylvania (1991), 126 pp.Google Scholar
  70. 70.
    H. Suhr and G. Weddigen, Combust. Sci. Technol. 72, 101 (1990).Google Scholar
  71. 71.
    G. E. Vogtlin, B. T. Merritt, M. C. Hsiao, P. H. Wallman, and B. M. Penetrante, United States Patent 5711147 (1998).Google Scholar
  72. 72.
    H. R. Paur, in Sulphur Dioxide and Nitrogen Oxides in Industrial Waste Gases: Emission, Legislation, and Abatement, D. van Velzen, ed. ECSC, EEC, EAEC, Brussels and Luxembourg (1991), pp. 183–203.Google Scholar
  73. 73.
    L. Civitano, in Non-Thermal Plasma Techniques for Pollution Control, B. M. Penetrante and S. E. Schultheis, eds., Springer-Verlag, Berlin (1993), pp. 103–130.Google Scholar
  74. 74.
    K. Ohtsuka, T. Yukitake, and M. Shimoda, Proc. Inst. of Electrostat. Jpn. 9, 346 (1985).Google Scholar
  75. 75.
    I. K. Puri, Combust. Flame 102, 512 (1995).Google Scholar
  76. 76.
    O. Tokunaga, K. Nishimura, S. Machi, and M. Washino, Intern. J. Appl. Radiat. Isotopes 29, 81 (1978).Google Scholar
  77. 77.
    K. Yan, D. Higashi, S. Kanazawa, T. Ohkubo, Y. Nomoto, and J. S. Chang, Proc. IEE Jpn. Annu. Meet. 1, 248 (1988).Google Scholar
  78. 78.
    Y. J. Lee, H. W. Pennline, and J. M. Markussen, Rept. DE90007265, Pittsburgh Energy Technology Center, Pittsburgh, Pennsylvania (1990), 22 pp.Google Scholar
  79. 79.
    E. M. Van Veldhuizen, M. A. Tas, and W. R. Rutgers, Proc. Intern. Workshop. Plasma Technol. Polluation Control Waste Treatment, Beijing (1996), pp. 115–123.Google Scholar
  80. 80.
    J. Pinart, M. Smirdec, M. E. Pinart, J. J. Aaron, Z. Benmansour, M. Goldman, and A. Goldman, Atmospheric Environ. 30, 129 (1996).Google Scholar
  81. 81.
    J. Pinart, M. Smirdec, D. Tessier, J. J. Aaron, M. Goldman, and A. Goldman, Atmospheric Environ. 31, 3407 (1997).Google Scholar
  82. 82.
    W. G. DeMore, S. P. Sender, D. M. Golden, R. F. Hampson, M. J. Kurylo, C. J. Howard, A. R. Ravishankara, C. E. Kolb, and M. J. Molina, JPL Public Jet Propulsion Laboratory, Pasadena, CA (1994), p. 94.Google Scholar
  83. 83.
    J. G. Calvert, G. Yarwood, and A. Dunker, Res. Chem. Intermediates 20, 463 (1994).Google Scholar
  84. 84.
    P. S. Christensen, S. Wedel, and H. Livbjerg, Chem. Eng. Sci. 49, 4605 (1995).Google Scholar
  85. 85.
    E. W. Kaiser and S. M. Japar, J. Phys. Chem. 82, 2753 (1978).Google Scholar
  86. 86.
    R. Li, K. Yan, J. Miao, and X. Wu, Chem. Eng. Sci. 53, 1529 (1998).Google Scholar
  87. 87.
    A. W. Stelson and J. H. Seinfeld, Atmospheric Environ. 16, 983 (1982).Google Scholar
  88. 88.
    I. Mochida, M. Kishino, S. Kawano, H. Iwaizono, A. Yasutake, and M. Yoshikawa, Energy Fuels 11, 307 (1997).Google Scholar
  89. 89.
    S. Kanazawa, J. S. Chang, G. F. Round, G. Sheng, T. Ohkubo, Y. Nomoto, and T. Adachi, Combust. Sci. Technol. 133, 91 (1998).Google Scholar
  90. 90.
    H. Matzing and H. R. Paur, in Gaseous Pollutants: Characterization and Cycling, J. O. Nriagu, ed., Wiley, New York (1992), pp. 307–333.Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • K. Yan
    • 1
    • 2
  • S. Kanazawa
    • 1
  • T. Ohkubo
    • 1
  • Y. Nomoto
    • 1
  1. 1.Department of Electrical and Electronic EngineeringOita UniversityOita, Japan
  2. 2.Department of Applied PhysicsBeijing Institute of TechnologyBeijingChina

Personalised recommendations