Journal of Dynamical and Control Systems

, Volume 4, Issue 4, pp 539–581

Countable Set of Limit Cycles for the Equation \(\frac{{dw}}{{dz}} = \frac{{P_n \left( {z,w} \right)}}{{Q_n \left( {z,w} \right)}}\)

  • A.A. Shcherbakov
  • E. Rosales-González
  • L. Ortiz-Bobadilla
Article

Abstract

Differential equations on the complex plane with a rational right-hand side are considered. In a generic case such equation has a countable set of homologically independent limit cycles. It is proved that the exceptional set – the set of equations such that they do not have this property – has the real codimension at least two in the space of equations with right-hand side of degree no greater than a fixed number n.

Polynomial differential equations limit cycles monodromy group conformal maps fixed points 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. I. Arnold, Geometrical methods in the theory of ordinary differential equations. Springer-Verlag, Berlin and New York, 1988.Google Scholar
  2. 2.
    M. Belliart, I. Liousse, and F. Loray, Sur l'existence de points fixes attractifs pour les sous-groupes de Aut(ℂ, 0). C. R. Acad. Sci. Paris, Ser. I 24 (1997), 443–446.Google Scholar
  3. 3.
    C. Camacho and P. Sad, Topological classification and bifurcations of holomorphic flows with resonances in C 2. Invent. Math. 67 (1982), 447–472.Google Scholar
  4. 4.
    P. M. Elizarov, Yu. S. Il'yashenko, A. A. Shcherbakov, and S. M. Voronin, Finitely generated groups of germs of one-dimensional conformal maps, and invariants for complex singular points of analytic foliations of the complex plane. Adv. Sov. Math. 14 (1993), 57–105.Google Scholar
  5. 5.
    X. Gomez-Mont and B. Wirtz, On fixed points of conformal pseudogroups. Bol. Soc. Brasil Mat. 26 (1995), No. 2, 201–209.Google Scholar
  6. 6.
    X. Gómez-Mont and L. Ortiz-Bobadilla, Sistemas dinámicos holomorfos en superficies. In: Aportaciones Matemáticas, serie Notas de Investigación No. 3, Sociedad Matemática Mexicana, 1989, 207.Google Scholar
  7. 7.
    Yu. S. Il'yashenko, The topology of phase portraits of analytic differential equations on the complex plane. (Russian) In: Trudy Sem. Petrovski. 4 (1978), 84–136. English translation in: Sel. Math. Sov. 5 (1986), No. 2, 142–199.Google Scholar
  8. 8.
    _____, Nonlinear Stokes phenomena. Adv. Sov. Math. 14 (1993), 1–53.Google Scholar
  9. 9.
    I. Nakai, Separatrices for nonsolvable dynamics on (C,0). Ann. Inst. Fourier 44,No. 2, 569–599.Google Scholar
  10. 10.
    A. A. Shcherbakov, Topological classification of germs of conformal maps with identical linear part. (Russian) Vest. Moskov. Univ., Ser. I, Math.-Mekh. (1982) No. 3, 52–57. English translation in: Moscow. Univ. Math. Bull. 37 (1982).Google Scholar
  11. 11.
    _____, On the density of the orbits of the pseudogroup of conformal maps and generalization of Xudai-Verenov theorem. Vest. Moskov. Univ., Ser. I, Math.-Mekh. (1982), No. 4, 10–15.Google Scholar
  12. 12.
    _____, On complex limit cycles of the equation \(\frac{{dw}}{{dz}} = P_n /Q_n \). Russ. Math. Surv. Commun. Moscow Math. Soc. 41 (1986), No. 1, 247.Google Scholar
  13. 13.
    _____, Topological and analytical conjugation for groups of germs of conformal maps. (Russian) Proc. I. G. Petrovski semin. 10 (1984), 270–296.Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • A.A. Shcherbakov
    • 1
  • E. Rosales-González
    • 2
  • L. Ortiz-Bobadilla
    • 2
  1. 1.Russian Academy of SciencesFrumkin Inst. of ElectrochemistryRussia
  2. 2.Instituto de Matemáticas, Universidad Nacional Autónoma de México, C.PMexico CityMéxico

Personalised recommendations