Advertisement

Cellular and Molecular Neurobiology

, Volume 22, Issue 5–6, pp 783–795 | Cite as

Role of Endothelin Type B Receptor in NO/cGMP Signaling Pathway in Rat Median Eminence

  • Yaira Mathison
  • Anita Israel
Article

Abstract

We studied the effect of endothelins (ETs) on receptor-mediated NO/cGMP signaling in rat arcuate nucleus–median eminence (AN-ME) fragments, an hypothalamic structure known to contain a rich plexus of nitric oxide synthase (NOS)-containing neurons and fibers together with densely arranged ETB-receptor-like immunoreactive fibers. NOS activity was determined measuring the conversion of [3H] arginine to [3H] citrulline, as an index of NO produced. cGMP production was determined by radio immunoassay. ET-1, ET-3, and the selective ETB receptor agonist, IRL1620, significantly increased cGMP formation and NOS activity. Preincubation of AN-ME fragment with L-arginine analog, N-nitro-L-arginine (L-NAME), inhibited ET-1 or IRL1620-stimulated cGMP formation. The addition of the selective ETB receptor antagonist, BQ788, blocked ET-1-, ET-3-, or IRL1620-induced increase in NOS activity and cGMP generation, while BQ123, a selective ETA receptor antagonist, was ineffective. Our results demonstrate that in whole rat AN-ME fragments, ETs stimulate NO/cGMP signaling pathway through the interaction with the ETB receptor subtype, supporting the concept that ETs may represent an important regulator of reproductive and neuroendocrine function.

nitric oxide cGMP endothelin ETB receptor median eminence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Arai, H., Hori, S., Aramori, I., Ohkubo, H., and Nakanishi, S. (1990). Cloning and expression of a cDNA encoding an endothelin receptor. Nature 348:730–732.Google Scholar
  2. Brann, D. W., Bhat, G. K., Lamar, C. A., and Mahesh, V. B. (1997). Gaseous transmitters and neuroendocrine regulation. Neuroendocrinology 65:385–395.Google Scholar
  3. Bredt, D. S., Glatt, C. E., Hwang, P. M., Fotuhi, M., Dawson, T. M., and Snyder, S. H. (1991). Nitric oxide synthase protein and mRNAare discretely localized in neuronal populations of the mammalian CNS together with NADPH diaphorase. Neuron 7:615–624.Google Scholar
  4. Bredt, D. S., and Snyder, S.H. (1990). Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc. Natl. Acad. Sci. U.S.A. 87: 682–685.Google Scholar
  5. Calogero, A. E., Raiti, F., Nicolosi, G., Burrello, N., D'Agata, R. D., and Matero, F. (1994). Effects of endothelin-1 and endothelin-3 on rat hypothalamic corticothophin-releasing hormone and pituitary ACTH release in vitro. J. Endocrinol. 140:419–424.Google Scholar
  6. Costa, A., Trainer, R., Besser, M., and Grossman, A. (1993). Nitric oxide modulates the release of corticotropin-releasing hormone from the rat hypothalamus in vitro. Brain Res. 605:187–192.Google Scholar
  7. D'Amico, M., Di Fillipo, C., and Rossi, F. (1998). Depresor response to endothelin into the superior colliculus of rats: Predominant role of endothelin ETB receptor. Eur. J. Pharmacol. 347:71–75.Google Scholar
  8. De Vente, J., Hopkins, D. A., Markerink-Van Ittersum, M., Emson, P. C., Schmidt, H. H. H. W., and Steinbusch, H. W. M. (1998). Distribution of nitric oxide synthase and nitric oxide-receptive cyclic GMP-producing structures in the rat brain. Neuroscience 87:207–241.Google Scholar
  9. Dinerman, L., Dawson, T. M., Schell, M. J., Snowman, A., and Snyder, S. H. (1994). Endothelial nitric oxide synthase localized to hippocampal pyramidal cells: Implications for synaptic plasticity. Proc. Natl. Acad. Sci. U.S.A. 91:4214–4218.Google Scholar
  10. Di Nuncio, A. S., Jaureguiberry, M. S., Rodano, V., Bianciotti, L. G., and Vatta, M. S. (2002). Endothelin-1 and-3 diminish neuronal NE release through an NO mechanism in rat anterior hypothalamus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283:R615–R622.Google Scholar
  11. Edwards, R. M., Pullen, M., and Nambi, P. (1992). Activation of endothelin ETB receptors increases glomerular cGMP via an L-arginine-dependent pathway. Am. J. Physiol. 263:F1020–F1025.Google Scholar
  12. Evans, J. J. (1999). Modulation of gonadotrophin levels by peptides acting at the anterior pituitary gland. Endocrinol. Rev. 20:46–67.Google Scholar
  13. Fujitani, Y., Udea, H., Okada, T., Urade, Y., and Karaki, H. (1993). A selective agonist of endothelin type B receptor, IRL1620, stimulates cyclic GMP increase via nitric oxide formation in rat aorta. J. Pharmacol. Exp. Ther. 267:683–689.Google Scholar
  14. Giaid, A., Gibson, S. J., Herrero, M. T., Gentleman, S., Legon, S., Yanagisawa, M., Masaki, T., Ibrahim, N. B. N., Roberts, G.W., Rossi, M. L., and Polak, J. M. (1991). Topographical localisation of endothelin mRNA and peptide immunoreactivity in neurones of the human brain. Histochemistry 95:303–314.Google Scholar
  15. Hagiwara, H., Nagasawa, T., Yamamoto, T., Lodhi, K. M., Ito, T., Takemura, N., and Hirose, S. (1993). Immunochemical characterization and localization of endothelin ETB receptor. Am. J. Physiol. 264:R777–R783.Google Scholar
  16. Herbison, A. E., Simonian, S. X., Norris, P. J., and Emson, P. C. (1996). Relationship of neuronal nitric oxide synthase immunoreactivity to GnRH neurons in the ovariectomized and intact female rat. J. Neuroendocrinol. 8:73–82.Google Scholar
  17. Hirata, Y., Emori, T., Eguchi, S., Kanno, K., Imai, T., Ohta, K., and Marumo, F. (1993). Endothelin receptor subtype B mediates synthesis of nitric oxide by cultured bovine endothelial cells. J. Clin. Invest. 91:1367–1373.Google Scholar
  18. Hori, S.,Komatsu,Y., Shigemoto, R., Mizuno, M., and Nakanishi, S. (1992). Distinct tissue distribution and cellular localization of two messenger ribonucleic acids encoding different subtypes of rat endothelin receptors. Endocrinology 130:1885–1895.Google Scholar
  19. Ishii, K., Warner, T. D., Sheng, H., and Murad, F. (1991). Endothelin increases cyclic GMP levels in LLCPK1 porcine kidney epithelial cells via formation of an endothelium-derived relaxing factor-like substance. J. Pharmacol. Exp. Ther. 259:1102–1108.Google Scholar
  20. Israel, A., Garrido, M. R., Mathison, Y., Barbella, Y., and Becemberg, I. (1990). Brain Natriuretic Peptide stimulates particulate guanylate cyclase activity in selected areas of the rat brain. Neurosci. Lett. 114(1)114:107–112.Google Scholar
  21. Kadekaro, M., Terrell, M. L., Liu, H., Gestl, S., Bui, V., and Summy-Long, J. Y. (1998). Effect of L-NAME on cerebral metabolic, vasopressin, oxytocin, and blood pressure responses in haemorrhaged rats. Am. J. Physiol. 274:R1070–R1077.Google Scholar
  22. Kawakami, S., Ichikawa, M., Yokosuka, M., Tsukamura, H., and Maeda, K. (1998). Glial and neuronal localization of neuronal nitric oxide synthase immunoreactivity in the median eminence of female rats. Brain Res. 789:322–326.Google Scholar
  23. Kawano, Y., Yoshida, K., Yoshimi, H., Kuramochi, M., and Omae, T. (1989). The cardiovascular effect of intracerebroventricular endothelin in rats. J. Hypertens. 7(Suppl.):S22–S23.Google Scholar
  24. Knowles, R. G., Palacios, M., Palmer, R. M. J., and Moncada, S. (1989). Formation of nitric oxide from L-arginine in the central nervous system: A transduction mechanism for stimualtion of the soluble guanylate cyclase. Proc. Natl. Acad. Sci. U.S.A. 86:5159–5162.Google Scholar
  25. Kohzuki, M., Chai, S. Y., Paxinos, G., Karavas, A., Casley D. J., Johnston, C. I., and Mendelshon, F. A. O. (1991). Localization and characterization of endothelin binding sites in the rat brain visualized by in vitro autoradiography. Neuroscience 42:245–260.Google Scholar
  26. Kurokawa, K., Yamada, H., Liu, Y., and Kudo, M. (2000). Immunohistochemical distribution of the endothelin-converting enzyme-1 in the rat hypothalamo-pituitary axis. Neurosci. Lett. 284(1/2):81–84.Google Scholar
  27. Kurokawa, K., Yamada, H., and Ochi, J. (1997). Topographical distribution of neurons containing endothelin type A receptor in the rat brain. J. Comp. Neurol. 389:348–360.Google Scholar
  28. Lopez, F. J., Moretto, M., Merchenthaler, I., and Negro-Vilar, A. (1997). Nitric oxide is involved in the genesis of pulsatile LHRH secretion from immortalized LHRH neurons. J. Neuroendocrinol. 9:647–654.Google Scholar
  29. Lowry, O., Rosebrough, N., Farr, A., and Randall, R. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.Google Scholar
  30. Mathison, Y., and Israel, A. (1998). Endothelin ETB receptor subtype mediates nitric/oxide cGMP formation in rat adrenal medulla. Brain Res. Bull. 45:15–19.Google Scholar
  31. McCumber, M.W., Ross, C. A., and Snyder, S.H. (1990). Endothelin in brain: Receptors, mitogenesis and biosynthesis in glial cells. Proc. Natl. Acad. Sci. U.S.A. 87:2358–2363.Google Scholar
  32. Moretto, M., Lopez, F.J., and Negro-Vilar, A. (1993a) Endothelin-3 stimulates luteinizing hormonereleasing hormone (LHRH) secretion from LHRH neurons by a prostaglandin-dependent mechanism. Endocrinology 132:789–794.Google Scholar
  33. Moretto, M., Lopez, F. J., and Negro-Vilar, A. (1993b). Nitric oxide regulates luteinizing hormone-releasing hormone secretion. Endocrinology 133:2399–2402.Google Scholar
  34. Moritoki, H., Miyano, H., Takeuchi, S., Yamaguchi, M., Hisayama,T., and Kondoch,W. (1993). Endothelin-3-induced relaxation of rat thoracic aorta: A role for nitric oxide formation. Br. J. Pharmacol. 108:1125–1130.Google Scholar
  35. Mosqueda-García, R., Fernandez-Violante, R., Hamakibo, T., and Stainback R. (1996). Vasopressin mediates the pressor effects of endothelin in the subfornical organ of the rat. J. Pharmacol. Exper. Ther. 277:1034–1042.Google Scholar
  36. Mosqueda-García, R., Inagami, T., Appalsemy, M., Sugiura, M., and Robertson, R. M. (1993). Endothelin as a neuropeptide cardiovascular effects in the brainstem of normotensive rats. Circ. Res. 72:20–35.Google Scholar
  37. Mosqueda-García, R., Yates, K., O'Leary, J., and Inagami, T. (1995). Cardiovascular and respiratory effect of endothelin in the ventrolateral medulla of normotensive rat. Hypertension 26:263–271.Google Scholar
  38. Owada, A., Tomita, K., Terada, Y., Sakamoto, H., Nonoguchi, H., and Marumo, F. (1994). Endothelin (ET)-3 stimulates cyclic guanosine 30, 50-monophosphate production via ETB receptor by producing nitric oxide in isolated rat glomerulus, and in cultured rat mesangial cells. J. Clin. Invest. 93:556–563.Google Scholar
  39. Prevot,V., Bouret, S., Stefabo, G. B., and Beauvillan, J.-C. (2000). Median eminence nitric oxide signalling. Brain Res. Rev. 34:21–41.Google Scholar
  40. Rettori, V., Belova, N., Dees, W. L., Nyberg, C. L., Gimeno, M., and McCann, S. M. (1993). Role of nitric oxide in the control of luteinizing hormone-releasing hormone release in vivo and in vitro. Proc. Natl. Acad. Sci. U.S.A. 90:10130–10134.Google Scholar
  41. Sakurai, T., Yanagisawa, M., Takura,Y., Miyazaki, H., Kimura, S., Goto, K., and Masaki, T. (1990). Cloning of a cDNAencoding a non-isopeptide-selective subtype of the endothelin receptor. Nature (London) 348:732–735.Google Scholar
  42. Samson, W. K., Skala, K. D., Alexander, B. D., and Huang, F. L. S. (1991a). Possible neuroendocrine actions of endothelin-3. Endocrinology 128:1465–1473.Google Scholar
  43. Samson, W. K., Skala, K. D., Alexander, B. D., and Huang, F. L. S. (1991b). Hypothalamic endothelin: Presence and effects related to fluid and electrolyte homeostasis. J. Cardiovasc. Pharmacol. 17:S346–S349.Google Scholar
  44. Schuman, E. M., and Madison, D. V. (1994). Nitric oxide and synaptic function. Annu. Rev. Neurosci. 17:153–183.Google Scholar
  45. Seidel, B., Stanarius, A., and Wolf, G. (1997). Differential expression of neuronal and endothelial nitric oxide synthase in blood vessels of the rat brain. Neurosci. Lett. 239:109–112.Google Scholar
  46. Sluck, J. M., Lin, R. C. S., Katolik, L. I., Jeng, A. Y., and Lehmann, J. C. (1999). Endothelin converting enzime-1, endothelin-1 and endothelin-3 like immunoreactivity in the rat brain. Neuroscience 91:1483–1497.Google Scholar
  47. Snyder, S. H., and Bredt, D. (1991). Nitric oxide as a neuronal messenger. Trends Pharmacol. Sci. 12:125–128.Google Scholar
  48. Stanarius, A., Topel, I., Schulz, S., Noack, H., and Wolf, G. (1997). Immunocytochemistry of endothelial nitric oxide synthase in the rat brain: A light and electron microscopical study using the tyramide de signal amplification technique. Acta Histochem. 99:411–429.Google Scholar
  49. Steiner, A., Parker, C., and Kipnis, D.M. (1972). Radio-immunoassay for cyclic nucleotides. J. Biol. Chem. 247:1106–1113.Google Scholar
  50. Szabó, C. (1996) Physiological and pathophysiological roles of nitric oxide in the central nervous system. Brain Res. Bull. 41:131–141.Google Scholar
  51. Tadepalli, A. S., and Hashim, M. A. (1995). Mechanisms of central endothelin-induced hypotension. Naunyn Schmiedebergs Arch. Pharmacol. 352:108–112.Google Scholar
  52. Takai, M., Umemura, I., Yamasaki, K., Waranabe, T., Fujitani,Y., Oda, K., Urade,Y., Unui, T., Yamamura, T., and Okada, T. (1992). A potent and specific agonist, Suc-(Glu9, Ala11,15)-endothelin-1(18-21), IRL-1620, for ETB receptor. Biochem. Biophys. Res. Commun. 184:953–959.Google Scholar
  53. Wall, K. M., and Ferguson, A. V. (1992). Brain Res. 586:111–116.Google Scholar
  54. Yamada, K., Emson, P., and Hokfelt, T. (1996) Immunohistochemical mapping of nitric oxide synthase in the rat hypothalamus and colocalization with neuropeptides. J. Chem. Neuroanat. 10:295–316.Google Scholar
  55. Yamada, H., and Kurokawa, K. (1998). Histochemical studies on endothelin and endothelin-A receptor in the hypothalamus. J. Cardiovasc. Pharmacol. 311(Suppl. 1):215–218.Google Scholar
  56. Yamamoto, T., Suzuki, H., and Uemura, H. (1997). Endothelin B receptor-like immunoreactivity is associated with LHRH-immunoreactive fibers in the rat hypothalamus. Neurosci. Lett. 223:117–120.Google Scholar
  57. Yamamoto, T., and Uemura, H. (1998). Distribution of endothelin B receptor-like immunoreactivity in the rat brain, kidney, and pancreas. J. Cardiovasc. Pharmacol. 311(Suppl. 1):S207–S211.Google Scholar
  58. Yanagisawa, M., Kurihara, H., Kimura, S., Tomobe, Y., Kobayashi, M., Mitsui, Y., Goto, K., and Masaki, T. (1988). A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332:411–415.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Yaira Mathison
    • 1
  • Anita Israel
    • 2
  1. 1.School of Medicine José María VargasUniversidad Central de VenezuelaCaracasVenezuela
  2. 2.School of Pharmacy, Laboratory of NeuropeptidesUniversidad Central deVenezuela, Caracas, Venezuela;

Personalised recommendations