Cellular and Molecular Neurobiology

, Volume 22, Issue 5–6, pp 675–688

Involvement of 5-HT2A/2B/2C Receptors on Memory Formation: Simple Agonism, Antagonism, or Inverse Agonism?

  • Alfredo Meneses


1. The 5-HT2 receptors subdivision into the 5-HT2A/2B/2C subtypes along with the advent of the selective antagonists has allowed a more detailed investigation on the role and therapeutic significance of these subtypes in cognitive functions. The present study further analyzed the 5-HT2 receptors role on memory consolidation.

2. The SB-200646 (a selective 5-HT2B/2C receptor antagonist) and LY215840 (a nonselective 5-HT2/7 receptor antagonist) posttraining administration had no effect on an autoshaped memory consolidation. However, both drugs significantly and differentially antagonized the memory impairments induced by 1-(3-chlorophenyl)piperazine (mCPP), 1-naphtyl-piperazine (1-NP), mesulergine, or N-(3-trifluoromethylphenyl) piperazine (TFMPP).

3. In contrast, SB-200646 failed to modify the facilitatory procognitive effect produced by (±)-2,5-dimethoxy-4-iodoamphetamine (DOI) or ketanserin, which were sensitive to MDL100907 (a selective 5-HT2A receptor antagonist) and to a LY215840 high dose.

4. Finally, SB-200646 reversed the learning deficit induced by dizocilpine, but not that by scopolamine; while SB-200646 and MDL100907 coadministration reversed memory deficits induced by both drugs.

5. It is suggested that 5-HT2B/2C receptors might be involved on memory formation probably mediating a suppressive or constraining action. Whether the drug-induced memory impairments in this study are explained by simple agonism, antagonism, or inverse agonism at 5-HT2 receptors remains unclear at this time.

6. Notably, the 5-HT2 receptor subtypes blockade may provide some benefit to reverse poor memory consolidation conditions associated with decreased cholinergic, glutamatergic, and/or serotonergic neurotransmission.

autoshaping 5-HT2B/2C receptors 5-HT2A learning consolidation serotonin rats 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aghajanian, G. K., and Marek, G. J. (2000). Serotonin model of schizophrenia: Emerging role of glutamate mechanisms. Brain. Res. Rev. 31:302–312.Google Scholar
  2. Altman, H. J., and Normile, H. J. (1988).What is the nature of the role of the serotonergic nervous system in learning and memory? Prospects for development of an effective strategy for senile dementia. Neurobiol. Aging 9:627–638.Google Scholar
  3. Azmitia, E.C., and Whitaker-Azmitia, P. (1997). Development and adult plasticity of serotonergic neurons and their target cells. In Baumgarten,G. (ed.), Serotonergic Neurons and 5-HT Receptors in the CNS, Springer, Berlin, pp. 1–39, 49.Google Scholar
  4. Barbas, D., Zappulla, J. P., Angers, S., Bouvier, M., Castellucci, V. F., and DesGroseillers, L. (2002). Functional characterization of a novel serotonin receptor (5-HTap2) expressed in the CNS of Aplysia californica. J. Neurochem. 80:335–345.Google Scholar
  5. Barnes, N. M., and Sharp, T. (1999). A review of central 5-HT receptors and their function. Neuropharmacology 38:1083–1152.Google Scholar
  6. Baxter,G., Kennett,G., Blaney, F., and Blackburn,T. (1995). 5-HT2 receptor subtypes:Afamily re-united? Trends Pharmacol. Sci. 16:105–110.Google Scholar
  7. Berendsen, H. H. G., Jenck, F., and Broekkamp, C. L. E. (1990). Involvement of 5-HT1C receptors in drug-induced penile erections in rats. Psychopharmacology 101:57–61.Google Scholar
  8. Bonhaus, D. W., Bach, C., Desouza. A., Salazar, F. H., Matsuoka, B. D., Zuppan, P., Chan, H. W., and Eglen, R. M. (1995). The pharmacology and distribution of human 5-hydroxytryptamine2B (5-HT2B) receptor gene products: Comparison with 5-HT2A and 5-HT2C receptors. Br. J. Pharmacol. 115:622–628.Google Scholar
  9. Cassel, J. C., and Jeltsch, H. (1995). Serotonergic modulation of cholinergic function in the central nervous system: Cognitive implications. Neuroscience 69:1–41.Google Scholar
  10. Cushing, D. J., Zgombick, J. M., Nelson, D. L., and Cohen, M. L. (1996). LY215840, a high-affinity 5-HT7 receptor ligand, blocks serotonin-induced relaxation in canine coronary artery. J. Pharmacol. Exp. Ther. 277:1560–1566.Google Scholar
  11. Davies, P., and Maloney, A. F. J. (1996). Selective loss of cerebral cholinergic neurons in Alzheimer's disease. Lancet 2:1403.Google Scholar
  12. De Ligt, R. A. F., Kourounakis, A. P., and Ijzerman, A. P. (2000). Inverse agonism atGprotein-coupled receptors: (Patho)physiological relevance and implications for drug discovery. Br. J. Pharmacol. 130:1–12.Google Scholar
  13. Fuller, R. W. (1996). Serotonin receptors involved in the regulation of pituitary-adrenocortical function in rats. Behav. Brain. Res. 73:215–219.Google Scholar
  14. Gower, A. J. (1992). 5-HT receptors and cognitive function. In Marsden, H. (ed.), Central Serotonin Receptors and Psychotropic Drugs, Blackwell, Oxford, pp. 239–259.Google Scholar
  15. Greenamyre, J. T., and Young, A. B. (1989). Excitatory amino acids and Alzheimer's disease. Neurobiol. Aging 10:593–602.Google Scholar
  16. Harvey, J. A. (1996). Serotonergic regulation of associative learning. Behav. Brain. Res. 73:47–50.Google Scholar
  17. Harvey, J. A., Welsh, S. E., Hood, H., and Romano, A. G. (1999). Effect of 5-HT2 receptor antagonists on a cranial nerve reflex in the rabbit: Evidence for inverse agonism. Psychopharmacology 141:162–168.Google Scholar
  18. Herrick-Davis, K., Grinde, E., Gauthier, C., and Teitler, M. (1998). Pharmacological characterization of the constitutively activated state of the serotonin 5-HT2C receptor. Ann.N.Y. Acad. Sci. 861:140–145.Google Scholar
  19. Hoyer, D. (1988a). Functional correlates of serotonin 5-HT1 recognition sites. J. Recept. Res. 8:59–81.Google Scholar
  20. Hoyer, D. (1988b). Molecular pharmacology and biology of 5-HT1C receptors. Trends Pharmacol. Sci. 9:89–94.Google Scholar
  21. Hoyer, D., Clarke, D. E., Fozard, J. R., Hartig, P. R., Martin, G. R., Mylecharane, E. J., Saxena, P. R., and Humphrey, P. P. A. (1994). International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (serotonin). Pharmacol. Rev. 46:157–203.Google Scholar
  22. Hoyer, D., Engel, D., and Kalkman, H. O. (1985). Molecular pharmacology of 5-HT1 and 5-HT2 recognition sites in rat and pig brain membranes: Radioligand binding studies with [3H]5-HT, [3H]8-OHDPAT, (¡)[125I]iodocyanopindolol, [3H]mesulergine and [3H]ketanserin. Eur. J. Pharmacol. 118:13–23.Google Scholar
  23. Hoyer,D., and Fozard, J. R. (1991). 5-Hydroxytryptamine receptors. In Doods, V.M. (ed.), Receptor Data for Biological Experiments, Ellis Horwood, New York, pp. 35–41.Google Scholar
  24. Hoyer, D., Hannon, J. P., and Martin, G. R. (2002). Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol. Biochem. Behav. 71:533–554.Google Scholar
  25. Hyman, B. T., Van Hoesen, G. V., and Damasio, A. R. (1987). Alzheimer's disease: Glutamate depletion in the hippocampal perforant pathway zone. Ann. Neurol. 22:37–40.Google Scholar
  26. Ingram, D. K., Shimada, A., Spangler, E. L., Ikari, H., Hengemihle, J., Kuo, H., and Greig, N. (1996). Cognitive enhancement new strategies for stimulating cholinergic, glutamatergic, and nitric oxide systems. Ann. N.Y. Acad. Sci. 786:346–361.Google Scholar
  27. Johnson, M. D. (1994). Synaptic glutamate release by postnatal rat serotonergic neurons in microculture. Neuron 12:433–442.Google Scholar
  28. Kehne, J. H., Baron, B. M., Carr, A. A., Chaney, S. F., Elands, J., Feldman, D. J., Frank, R. A., VanGiersbergen, P. L. M., McClosky, T. C., Johnson, M. P., McCarthy, D. R., Poirot, M., Senya, H., Siegel, B. W., and Widmaier, C. (1996). Preclinical characterization of the potential of the putative atypical antipsychotic MDL 100,907 as a potent 5-HT2A antagonist with a favorable CNS safety profile. J. Pharmacol. Exp. Ther. 277:968–981.Google Scholar
  29. Kennett, G. A. (1993). 5-HT1C receptors and their therapeutic relevance. Curr. Opin. Invest. Drugs 2:317–362.Google Scholar
  30. Kennett, G. A., and Curzon, G. (1991). Potencies of antagonists indicate that 5-HT1C receptors mediate 1-(3-chlorophenyl)piperazine-induced hypophagic. Br. J. Pharmacol. 103:2016–2020.Google Scholar
  31. Kennett, G. A., Wood, M. D., Glen, A., Grewal, S., Forbes, I., Gadre, A., and Blackburn, T. P. (1994). In vivo properties of SB-200646A, a 5-HT2C/2B receptor antagonist. Br. J. Pharmacol. 111:797–802.Google Scholar
  32. Krystal, J. H., Belger, A., D'souza, D. C., Anand, A., Charney, D. S., Aghajanian, G. K., and Moghaddam, B. (1999). Therapeutic implications of the hyperglutamatergic effects of NMDA antagonists. Neuropsychopharmacology 22:S143–S157.Google Scholar
  33. Martin, G. R., Eglen, R. M., Hamblin, M.W., Hoyer, D., and Yocca, F. (1998). The structure and signaling properties of 5-HT receptors: An endless diversity. Trends Pharmacol. Sci. 19:2–4.Google Scholar
  34. McGaugh, J. L. (1989). Dissociating learning and performance: Drug and hormone enhancement of memory storage. Brain Res. Bull. 23:339–345.Google Scholar
  35. Meneses, A. (1999). 5-HT system and cognition. Neurosci. Biobehav. Rev. 23:1111–1125.Google Scholar
  36. Meneses, A. (2001). Could the 5-HT1B receptor inverse agonism affect learning consolidation? Neurosci. Biobehav. Rev. 25:191–201.Google Scholar
  37. Meneses, A. (2002). Tianeptine: 5-HT uptake sites and 5-HT1¡7 receptors modulate memory formation in an autoshaping Pavlovian/Instrumental task. Neurosci. Biobehav. Rev. 26:309–319.Google Scholar
  38. Meneses, A., and Hong, E. (1997a).Apharmacological analysis of serotonergic receptors: Effects of their activation or blockade in learning. Prog. Neuropsychopharmacol. Biol. Psychiatry 21:273–296.Google Scholar
  39. Meneses, A., and Hong, E. (1997b). Role of 5-HT1B, 5-HT2A and 5-HT2C receptors in learning. Behav. Brain Res. 87:105–110.Google Scholar
  40. Meneses, A., and Hong, E. (1999). 5-HT1A receptors modulate the consolidation of learning in normal and cognitively impaired rats. Neurobiol. Learn. Mem. 71:207–218.Google Scholar
  41. Meneses, A., Orozco, G., and Hong, E. (1998). Effect of the 5-HT receptor antagonists SB200646 (5-HT2A/2B/2C) and LY215840 (5-HT7) on learning. Soc. Neurosci. 24:1371.Google Scholar
  42. Meneses, A., Terron, J. A., and Hong, E. (1997). Effects of the 5-HT receptor antagonists GR127935 (5-HT1B/1D) and MDL100907 (5-HT2A) in the consolidation of learning. Behav. Brain. Res. 89:217–223.Google Scholar
  43. Packard, M. G., and Cahill, L. (2001). Affective modulation of multiple memory systems. Curr. Opin. Neurobiol. 11:752–756.Google Scholar
  44. Perry, E. K., Perry, R. H., Blessed, G., and Tomlinson, B. E. (1977). Necropsy evidence in cerebral cholinergic deficits in senile dementia. Lancet 1:189.Google Scholar
  45. Pierce, P. A., and Peroutka, S. J. (1989). Hallucinogenic drug interactions with neurotransmitter receptor binding sites in human cortex. Psychopharmacology 97:118–122.Google Scholar
  46. Prinssen, E. P. M., Koek,W., and Kleven, M. S. (2000). The effects of antipsychotic with 5-HT2C receptor affinity in behavioral assays selective for 5-HT2C receptor antagonist properties of compounds. Eur. J. Pharmacol. 388:57–67.Google Scholar
  47. Procter, A.W., Palmer, A. M., Francis, P. T., Lowe, S. L., Neary, D., Murphy, E., Doshi, R., and Bowen, D. M. (1988). Evidence of glutamatergic denervation and possible abnormal metabolism in Alzheimer's disease. J. Neurochem. 50:790–802.Google Scholar
  48. Rauser, L., Savage, J. E., Meltzer, H. Y., and Roth, B. L. (2001). Inverse agonist actions of typical and typical and atypical antipsychotic drugs at the human 5-hydroxytryptamine2C receptor. J. Pharmacol. Exp. Ther. 299:83–89.Google Scholar
  49. Ruat. M., Traiffort, E., Leurs, R., Tardivel-Lacombe, J., Diaz, J., Arrang, J.-M., and Schwartz, J.-C. (1993). Molecular cloning, characterization, and localization of a high-affinity serotonin receptor (5-HT7) activating cAMP formation. Proc. Natl. Acad. Sci. U.S.A. 90:8547–8551.Google Scholar
  50. Shen, Y., Monsma, F. J., Metcalf, M. A., Jose, P. A., Hamblin, M. W., and Sibley, D. R. (1993). Molecular cloning and expression of a 5-hydroxytryptamine7 serotonin receptor subtype. J. Biol. Chem. 268:18200–18204.Google Scholar
  51. Tallman, J. F. (2000). Development of novel antipsychotic drugs. Brain Res. Rev. 21:385–390.Google Scholar
  52. Titeler, M., Lyon, R. A., and Glennon, R. A. (1988). Radioligand binding evidence implicates the brain 5-HT2 receptor as a site of action for LSD and phenylisopropylamine hallucinogens. Psychopharmacology 94:213–216.Google Scholar
  53. Van Wijngaarden, I., Tulp, M. T. M., and Soudijn, W. (1990). The concept of selectivity in 5-HT receptor research. Eur. J. Pharmacol. (Mol. Pharmacol. Sect.) 188:301–312.Google Scholar
  54. Weiner, D. M., Burstein, E. S., Nash, N., Croston, G. E., Currier, E. A., Vanover, K. E., Harvey, S. C., Donohue, E., Hansen, H. C., Andersson, C. M., Spalding, T. A., Gibson, D. F., Krebs-Thomson, K., Powell, S. B., Geyer, M. A., Hacksell, U., and Brann, M. R. (2001). 5-hydroxytryptamine2A receptor inverse agonists as antipsychotics. J. Pharmacol. Exp. Ther. 299:268–276.Google Scholar
  55. Welsh, S. E., Romano, A. G., and Harvey, J. A. (1998). Effects of serotonin 5-HT2A/2C antagonists on associative learning in the rabbit. Psychopharmacology 137:157–163.Google Scholar
  56. White, P., Goodhardt, M. J., Keet, J. P., Hiley, C. R., Carrasco, L. H., Williams, I. E. I., and Bowen, D. M. (1977). Neocortical cholinergic neurons in elderly people. Lancet 1:668–671.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Alfredo Meneses
    • 1
  1. 1.Department of PharmacobiologyCINVESTAV-IPNMexico, D. F.Mexico

Personalised recommendations