Journal of Dynamical and Control Systems

, Volume 5, Issue 1, pp 137–143 | Cite as

Topological Entropy of Free Semigroup Actions and Skew-Product Transformations

  • A. Bufetov


A definition of topological entropy for a free semigroup action is suggested. Suppose that a free semigroup acts on a compact metric space by continuous self-maps. To this action, we assign a skew-product transformation whose fiber entropy is taken to be the entropy of the initial action. The main result is Theorem 1, a topological analogue of the Abramov–Rokhlin formula.

Topological entropy free semigroup actions skew-product transformations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Kirillov, Dynamical systems, factors and group representations. Russ. Math. Surv. 22 (1967), No. 5, 67–80.Google Scholar
  2. 2.
    J. P. Conze, Entropie d'un groupe abélien de transformations. Z. Wahrscheinlichkeitstheorie und verwandte Gebiete 25 (1972), No. 1, 11–30.Google Scholar
  3. 3.
    Y. Katznelson and B. Weiss, Commuting measure-preserving transformations. Israel J. Math. 12 (1972) No. 2, 161–173.Google Scholar
  4. 4.
    A. M. Stepin and A. T. Tagi-Zade, Variational characterization of topological pressure for amenable groups of transformations. Dokl. Akad. Nauk SSSR 254 (1980), No. 3, 545–549.Google Scholar
  5. 5.
    R. Burton, K. Dajani, and R. Meester, Entropy for random group actions. Ergod. Theory and Dynam. Syst. 18 (1998) 109–124.Google Scholar
  6. 6.
    A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems. Cambridge Univ. Press, 1997.Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • A. Bufetov
    • 1
  1. 1.Independent University of MoscowMoscowRussia

Personalised recommendations